Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria B. Ræder is active.

Publication


Featured researches published by Maria B. Ræder.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation

H. B. Salvesen; Scott L. Carter; Monica Mannelqvist; Amit Dutt; Gad Getz; Ingunn Stefansson; Maria B. Ræder; Martin L. Sos; Ingeborg B. Engelsen; Jone Trovik; Elisabeth Wik; Heidi Greulich; Trond Hellem Bø; Inge Jonassen; Roman K. Thomas; Thomas Zander; Levy A. Garraway; Anne Margrete Øyan; William R. Sellers; Karl-Henning Kalland; Matthew Meyerson; Lars A. Akslen; Rameen Beroukhim

Although 75% of endometrial cancers are treated at an early stage, 15% to 20% of these recur. We performed an integrated analysis of genome-wide expression and copy-number data for primary endometrial carcinomas with extensive clinical and histopathological data to detect features predictive of recurrent disease. Unsupervised analysis of the expression data distinguished 2 major clusters with strikingly different phenotypes, including significant differences in disease-free survival. To identify possible mechanisms for these differences, we performed a global genomic survey of amplifications, deletions, and loss of heterozygosity, which identified 11 significantly amplified and 13 significantly deleted regions. Amplifications of 3q26.32 harboring the oncogene PIK3CA were associated with poor prognosis and segregated with the aggressive transcriptional cluster. Moreover, samples with PIK3CA amplification carried signatures associated with in vitro activation of PI3 kinase (PI3K), a signature that was shared by aggressive tumors without PIK3CA amplification. Tumors with loss of PTEN expression or PIK3CA overexpression that did not have PIK3CA amplification also shared the PI3K activation signature, high protein expression of the PI3K pathway member STMN1, and an aggressive phenotype in test and validation datasets. However, mutations of PTEN or PIK3CA were not associated with the same expression profile or aggressive phenotype. STMN1 expression had independent prognostic value. The results affirm the utility of systematic characterization of the cancer genome in clinically annotated specimens and suggest the particular importance of the PI3K pathway in patients who have aggressive endometrial cancer.


Nature Medicine | 2011

Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms

Pixu Liu; Hailing Cheng; Stephanie Santiago; Maria B. Ræder; Fan Zhang; Adam Isabella; Janet Yang; Derek J Semaan; Changzhong Chen; Edward A. Fox; Nathanael S. Gray; John E. Monahan; Robert Schlegel; Rameen Beroukhim; Gordon B. Mills; Jean Zhao

PIK3CA gain-of-function mutations are a common oncogenic event in human malignancy, making phosphatidylinositol 3-kinase (PI3K) a target for cancer therapy. Despite the promise of targeted therapy, resistance often develops, leading to treatment failure. To elucidate mechanisms of resistance to PI3K-targeted therapy, we constructed a mouse model of breast cancer conditionally expressing human PIK3CAH1047R. Notably, most PIK3CAH1047R-driven mammary tumors recurred after PIK3CAH1047R inactivation. Genomic analyses of recurrent tumors revealed multiple lesions, including focal amplification of Met or Myc (also known as c-Met and c-Myc, respectively). Whereas Met amplification led to tumor survival dependent on activation of endogenous PI3K, tumors with Myc amplification became independent of the PI3K pathway. Functional analyses showed that Myc contributed to oncogene independence and resistance to PI3K inhibition. Notably, PIK3CA mutations and c-MYC elevation co-occur in a substantial fraction of human breast tumors. Together, these data suggest that c-MYC elevation represents a potential mechanism by which tumors develop resistance to current PI3K-targeted therapies.


Clinical Cancer Research | 2009

Integrated Genome-Wide DNA Copy Number and Expression Analysis Identifies Distinct Mechanisms of Primary Chemoresistance in Ovarian Carcinomas

Dariush Etemadmoghadam; Anna deFazio; Rameen Beroukhim; Craig H. Mermel; Joshy George; Gad Getz; Richard W. Tothill; Aikou Okamoto; Maria B. Ræder; Paul Harnett; Stephen Lade; Lars A. Akslen; Anna V. Tinker; Bianca Locandro; Kathryn Alsop; Yoke-Eng Chiew; Nadia Traficante; Sian Fereday; Daryl S. Johnson; Stephen B. Fox; William R. Sellers; Mitsuyoshi Urashima; Helga B. Salvesen; Matthew Meyerson; David Bowtell

Purpose: A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Experimental Design: Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Results: Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. Conclusions: We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.


Pharmacogenomics Journal | 2005

Antipsychotic drugs activate SREBP-regulated expression of lipid biosynthetic genes in cultured human glioma cells: a novel mechanism of action?

Johan Fernø; Maria B. Ræder; Audun Osland Vik-Mo; Silje Skrede; Glambek M; Karl Johan Tronstad; Harald Breilid; Roger Løvlie; Rolf K. Berge; Christine Stansberg; Vidar M. Steen

Several studies have reported on structural abnormalities, decreased myelination and oligodendrocyte dysfunction in post-mortem brains from schizophrenic patients. Glia-derived cholesterol is essential for both myelination and synaptogenesis in the CNS. Lipogenesis and myelin synthesis are thus interesting etiological candidate targets in schizophrenia. Using a microarray approach, we here demonstrate that the antipsychotic drugs clozapine and haloperidol upregulate several genes involved in cholesterol and fatty acid biosynthesis in cultured human glioma cells, including HMGCR (3-hydroxy-3-methylglutaryl-coenzyme A reductase), HMGCS1 (3-hydroxy-3-methylglutaryl-coenzyme A synthase-1), FASN (fatty acid synthase) and SCD (stearoyl-CoA desaturase). The changes in gene expression were followed by enhanced HMGCR-enzyme activity and elevated cellular levels of cholesterol and triglycerides. The upregulated genes are all known to be controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We show that clozapine and haloperidol both activate the SREBP system. The antipsychotic-induced SREBP-mediated increase in glial cell lipogenesis could represent a novel mechanism of action, and may also be relevant for the metabolic side effects of antipsychotics.


Molecular and Cellular Biochemistry | 2006

SREBP Activation by Antipsychotic- and Antidepressant-Drugs in Cultured Human Liver Cells: Relevance for Metabolic Side-Effects?

Maria B. Ræder; Johan Fernø; Audun Osland Vik-Mo; Vidar M. Steen

Drug-induced weight gain is a major problem in the treatment of psychiatric disorders, especially with some antipsychotic- and antidepressant drugs. We have recently demonstrated that antipsychotic- and antidepressant drugs activate the SREBP (sterol regulatory element-binding proteins) transcription factors in human- and rat glial cells, with subsequent up-regulation of downstream genes involved in cholesterol- and fatty acid biosynthesis. Since stimulation of cellular lipogenesis in the liver could be of relevance for the metabolic side effects of these drugs, we have now investigated the effects of antidepressants, antipsychotic- and mood-stabilizing drugs on cell cultures of human liver cells. For several of the drugs being strongly associated with weight gain (clozapine, imipramine, and amitriptyline), we observed a very pronounced activation of SREBP. Ziprasidone and buproprion, however, which are not associated with weight gain, did hardly stimulate the SREBP system. For haloperidol, olanzapine and mirtazapine, the correspondence between metabolic side effects and SREBP stimulation in liver cells was less obvious. The mood-stabilizers did not increase SREBP activation. The results indicate a relationship between drug-induced activation of SREBP in cultured human liver cells and weight gain side-effects of antidepressant and antipsychotic drugs.


Clinical Cancer Research | 2013

Lack of Estrogen Receptor-α Is Associated with Epithelial–Mesenchymal Transition and PI3K Alterations in Endometrial Carcinoma

Elisabeth Wik; Maria B. Ræder; Camilla Krakstad; Jone Trovik; Even Birkeland; Erling A. Hoivik; Siv Mjøs; Henrica Maria Johanna Werner; Monica Mannelqvist; Ingunn Stefansson; Anne Margrete Øyan; Karl-Henning Kalland; Lars A. Akslen; Helga B. Salvesen

Purpose: We hypothesized that estrogen receptor-α (ER-α) status in endometrial carcinomas, associated with poor prognosis, is reflected in transcriptional signatures suggesting targets for new therapy. Experimental Design: Endometrial carcinoma samples in a primary investigation cohort (n = 76) and three independent validation cohorts (n = 155/286/111) were analyzed through integrated molecular profiling. Biomarkers were assessed by immunohistochemistry (IHC), DNA oligonucleotide microarray, quantitative PCR (qPCR), single-nucleotide polymorphism (SNP) array, and Sanger sequencing in the cohorts, annotated for comprehensive histopathologic and clinical data, including follow-up. Results: ER-α immunohistochemical staining was strongly associated with mRNA expression of the receptor gene (ESR1) and patient survival (both P < 0.001). ER-α negativity associated with activation of genes involved in Wnt-, Sonic Hedgehog-, and TGF-β signaling in the investigation cohort, indicating epithelial–mesenchymal transition (EMT). The association between low ER-α and EMT was validated in three independent datasets. Furthermore, phosphoinositide 3-kinase (PI3K) and mTOR inhibitors were among the top-ranked drug signatures negatively correlated with the ER-α–negative tumors. Low ER-α was significantly associated with PIK3CA amplifications but not mutations. Also, low ER-α was correlated to high expression of Stathmin, a marker associated with PTEN loss, and a high PI3K activation signature. Conclusion: Lack of ER-α in endometrial cancer is associated with EMT and reduced survival. We present a rationale for investigating ER-αs potential to predict response to PI3K/mTOR inhibitors in clinical trials and also suggest EMT inhibitors to ER-α–negative endometrial carcinomas. Clin Cancer Res; 19(5); 1094–105. ©2012 AACR.


Molecular Psychiatry | 2009

Association between the insulin-induced gene 2 ( INSIG2 ) and weight gain in a German sample of antipsychotic-treated schizophrenic patients: perturbation of SREBP-controlled lipogenesis in drug-related metabolic adverse effects?

S. Le Hellard; Frank M. Theisen; Michael Haberhausen; Maria B. Ræder; Johan Fernø; Stefan Gebhardt; Anke Hinney; Helmut Remschmidt; Jürgen-Christian Krieg; Claudia Mehler-Wex; Markus M. Nöthen; Johannes Hebebrand; Vidar M. Steen

Atypical antipsychotics are nowadays the most widely used drugs to treat schizophrenia and other psychosis. Unfortunately, some of them can cause major metabolic adverse effects, such as weight gain, dyslipidemia and type 2 diabetes. The underlying lipogenic mechanisms of the antipsychotic drugs are not known, but several studies have focused on a central effect in the hypothalamic control of appetite regulation and energy expenditure. In a functional convergent genomic approach we recently used a cellular model and demonstrated that orexigenic antipsychotics that induce weight gain activate the expression of lipid biosynthesis genes controlled by the sterol regulatory element-binding protein (SREBP) transcription factors. We therefore hypothesized that the major genes involved in the SREBP activation of fatty acids and cholesterol production (SREBF1, SREBF2, SCAP, INSIG1 and INSIG2) would be strong candidate genes for interindividual variation in drug-induced weight gain. We genotyped a total of 44 HapMap-selected tagging single nucleotide polymorphisms in a sample of 160 German patients with schizophrenia that had been monitored with respect to changes in body mass index during antipsychotic drug treatment. We found a strong association (P=0.0003–0.00007) between three markers localized within or near the INSIG2 gene (rs17587100, rs10490624 and rs17047764) and antipsychotic-related weight gain. Our finding is supported by the recent involvement of the INSIG2 gene in obesity in the general population and implicates SREBP-controlled lipogenesis in drug-induced metabolic adverse effects.


Neuroscience Letters | 2006

Antidepressant drugs activate SREBP and up-regulate cholesterol and fatty acid biosynthesis in human glial cells

Maria B. Ræder; Johan Fernø; Marte Glambek; Christine Stansberg; Vidar M. Steen

Dysfunction of glial lipid metabolism and abnormal myelination has recently been reported in both schizophrenia and bipolar disorder. Cholesterol is a major component of myelin, and glia-produced cholesterol serves as a glial growth factor in synaptogenesis. We have recently demonstrated that antipsychotic drugs activate the sterol regulatory element-binding protein (SREBP) transcription factors in human and rat glial cells, with subsequent up-regulation of numerous downstream genes involved in cholesterol and fatty acid biosynthesis. Since this stimulation of cellular lipogenesis could represent a new mechanism of action of psychotropic drugs, we investigated whether antidepressants and mood-stabilizers were able to induce a similar activation of SREBP-controlled lipid biosynthesis. Cultured human glioma cells (GaMg) were exposed to the antidepressant drugs imipramine, amitriptyline, clomipramine, citalopram, fluoxetine, mirtazapine and bupropion and the mood-stabilizers/antiepileptics lithium, valproate and carbamazepine. All antidepressant drugs activated the SREBP system with subsequent up-regulation of the downstream lipogenesis-related genes, although to a markedly different extent. The mood-stabilizers did not affect the SREBPs or the downstream genes. These results link antidepressant drugs, but not mood-stabilizers, to SREBP-mediated activation of cellular lipogenesis, and demonstrate a functional similarity between antipsychotic and antidepressant molecular drug action.


PLOS ONE | 2013

Integrated Genomic Analysis of the 8q24 Amplification in Endometrial Cancers Identifies ATAD2 as Essential to MYC-Dependent Cancers

Maria B. Ræder; Even Birkeland; Jone Trovik; Camilla Krakstad; Shyemaa Shehata; Steven E. Schumacher; Travis I. Zack; Antje Krohn; Henrica Maria Johanna Werner; Susan E. Moody; Elisabeth Wik; Ingunn Stefansson; Frederik Holst; Anne Margrete Øyan; Pablo Tamayo; Jill P. Mesirov; Karl-Henning Kalland; Lars A. Akslen; Ronald Simon; Rameen Beroukhim; Helga B. Salvesen

Chromosome 8q24 is the most commonly amplified region across multiple cancer types, and the typical length of the amplification suggests that it may target additional genes to MYC. To explore the roles of the genes most frequently included in 8q24 amplifications, we analyzed the relation between copy number alterations and gene expression in three sets of endometrial cancers (N = 252); and in glioblastoma, ovarian, and breast cancers profiled by TCGA. Among the genes neighbouring MYC, expression of the bromodomain-containing gene ATAD2 was the most associated with amplification. Bromodomain-containing genes have been implicated as mediators of MYC transcriptional function, and indeed ATAD2 expression was more closely associated with expression of genes known to be upregulated by MYC than was MYC itself. Amplifications of 8q24, expression of genes downstream from MYC, and overexpression of ATAD2 predicted poor outcome and increased from primary to metastatic lesions. Knockdown of ATAD2 and MYC in seven endometrial and 21 breast cancer cell lines demonstrated that cell lines that were dependent on MYC also depended upon ATAD2. These same cell lines were also the most sensitive to the histone deacetylase (HDAC) inhibitor Trichostatin-A, consistent with prior studies identifying bromodomain-containing proteins as targets of inhibition by HDAC inhibitors. Our data indicate high ATAD2 expression is a marker of aggressive endometrial cancers, and suggest specific inhibitors of ATAD2 may have therapeutic utility in these and other MYC-dependent cancers.


Molecular Psychiatry | 2010

Polymorphisms in SREBF1 and SREBF2, two antipsychotic-activated transcription factors controlling cellular lipogenesis, are associated with schizophrenia in German and Scandinavian samples

S. Le Hellard; Thomas W. Mühleisen; Srdjan Djurovic; Johan Fernø; Z Ouriaghi; Manuel Mattheisen; Catalina Vasilescu; Maria B. Ræder; Torben Hansen; Jana Strohmaier; Alexander Georgi; Felix F. Brockschmidt; Ingrid Melle; Igor Nenadic; Heinrich Sauer; M. Rietschel; Markus M. Nöthen; Thomas Werge; Ole A. Andreassen; S. Cichon; Vidar M. Steen

Several studies have reported structural brain abnormalities, decreased myelination and oligodendrocyte dysfunction in schizophrenia. In the central nervous system, glia-derived de novo synthesized cholesterol is essential for both myelination and synaptogenesis. Previously, we demonstrated in glial cell lines that antipsychotic drugs induce the expression of genes involved in cholesterol and fatty acids biosynthesis through activation of the sterol regulatory element binding protein (SREBP) transcription factors, encoded by the sterol regulatory element binding transcription factor 1 (SREBF1) and sterol regulatory element binding transcription factor 2 (SREBF2) genes. Considering the importance of these factors in the lipid biosynthesis and their possible involvement in antipsychotic drug effects, we hypothesized that genetic variants of SREBF1 and/or SREBF2 could affect schizophrenia susceptibility. We therefore conducted a HapMap-based association study in a large German sample, and identified association between schizophrenia and five markers in SREBF1 and five markers in SREBF2. Follow-up studies in two independent samples of Danish and Norwegian origin (part of the Scandinavian collaboration of psychiatric etiology study, SCOPE) replicated the association for the five SREBF1 markers and for two markers in SREBF2. A combined analysis of all samples resulted in highly significant genotypic P-values of 9 × 10−4 for SREBF1 (rs11868035, odd ration (OR)=1.26, 95% confidence interval (CI) (1.09–1.45)) and 4 × 10−5 for SREBF2 (rs1057217, OR=1.39, 95% CI (1.19–1.63)). This finding strengthens the hypothesis that SREBP-controlled cholesterol biosynthesis is involved in the etiology of schizophrenia.

Collaboration


Dive into the Maria B. Ræder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helga B. Salvesen

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar

Jone Trovik

Haukeland University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge