Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Balasis is active.

Publication


Featured researches published by Maria Balasis.


Cancer Research | 2005

Abrogation of Heat Shock Protein 70 Induction as a Strategy to Increase Antileukemia Activity of Heat Shock Protein 90 Inhibitor 17-Allylamino-Demethoxy Geldanamycin

Fei Guo; Kathy Rocha; Purva Bali; Michael Pranpat; Warren Fiskus; Sandhya Boyapalle; Sandhya Kumaraswamy; Maria Balasis; Benjamin Greedy; E. Simon M. Armitage; Nicholas J. Lawrence; Kapil N. Bhalla

17-Allylamino-demethoxy geldanamycin (17-AAG) inhibits the chaperone association of heat shock protein 90 (hsp90) with the heat shock factor-1 (HSF-1), which induces the mRNA and protein levels of hsp70. Increased hsp70 levels inhibit death receptor and mitochondria-initiated signaling for apoptosis. Here, we show that ectopic overexpression of hsp70 in human acute myelogenous leukemia HL-60 cells (HL-60/hsp70) and high endogenous hsp70 levels in Bcr-Abl-expressing cultured CML-BC K562 cells confers resistance to 17-AAG-induced apoptosis. In HL-60/hsp70 cells, hsp70 was bound to Bax, inhibited 17-AAG-mediated Bax conformation change and mitochondrial localization, thereby inhibiting the mitochondria-initiated events of apoptosis. Treatment with 17-AAG attenuated the levels of phospho-AKT, AKT, and c-Raf but increased hsp70 levels to a similar extent in the control HL-60/Neo and HL-60/hsp70 cells. Pretreatment with 17-AAG, which induced hsp70, inhibited 1-beta-D-arabinofuranosylcytosine or etoposide-induced apoptosis in HL-60 cells. Stable transfection of a small interfering RNA (siRNA) to hsp70 completely abrogated the endogenous levels of hsp70 and blocked 17-AAG-mediated hsp70 induction, resulting in sensitizing K562/siRNA-hsp70 cells to 17-AAG-induced apoptosis. This was associated with decreased binding of Bax to hsp70 and increased 17-AAG-induced Bax conformation change. 17-AAG-mediated decline in the levels of AKT, c-Raf, and Bcr-Abl was similar in K562 and K562/siRNA-hsp70 cells. Cotreatment with KNK437, a benzylidine lactam inhibitor of hsp70 induction and thermotolerance, attenuated 17-AAG-mediated hsp70 induction and increased 17-AAG-induced apoptosis and loss of clonogenic survival of HL-60 cells. Collectively, these data indicate that induction of hsp70 attenuates the apoptotic effects of 17-AAG, and abrogation of hsp70 induction significantly enhances the antileukemia activity of 17-AAG.


Clinical Cancer Research | 2005

Activity of Suberoylanilide Hydroxamic Acid Against Human Breast Cancer Cells with Amplification of Her-2

Purva Bali; Michael Pranpat; Ramona F. Swaby; Warren Fiskus; Hirohito Yamaguchi; Maria Balasis; Kathy Rocha; Hong-Gang Wang; Victoria M. Richon; Kapil N. Bhalla

Purpose: We determined the effects of suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on hsp90 and its client proteins Her-2, AKT, and c-Raf, as well as evaluated the cytotoxic effects of cotreatment of SAHA with trastuzumab or docetaxel in human breast cancer BT-474 and SKBR-3 cells containing amplification of Her-2. Experimental Design: The cells were treated with SAHA (1.0-5.0 μmol/L) and/or trastuzumab (5-40 μg/mL) or docetaxel (5-20 nmol/L). Following this, apoptosis and the levels of p21WAF1, p27KIP1, AKT, c-Raf, and Her-2, as well as of the key regulators of apoptosis were determined. Synergistic interaction between drugs was evaluated by median dose-effect analysis. Results: Treatment with SAHA up-regulated p21WAF1 and p27KIP1 levels, increased the percentage of cells in G2-M phase of the cell cycle, as well as induced apoptosis in a dose-dependent manner. This was associated with up-regulation of the pro-death Bak and Bim, as well as with attenuation of the levels of Her-2 and XIAP, survivin, Bcl-2, and Bcl-xL proteins. SAHA treatment induced acetylation of hsp90. This reduced the chaperone association of Her-2 with hsp90, promoting polyubiquitylation and degradation of Her-2. SAHA also attenuated the levels of c-Raf and AKT. Cotreatment with SAHA significantly increased trastuzumab or docetaxel-induced apoptosis of BT-474 and SKBR-3 cells. Additionally, median dose-effect analysis revealed that cotreatment with SAHA and trastuzumab or docetaxel induced synergistic cytotoxic effects against the breast cancer cells. Conclusions: These preclinical findings support the development of SAHA in combination with docetaxel and/or trastuzumab against Her-2-amplified breast cancer.


Clinical Cancer Research | 2006

Cotreatment with vorinostat (suberoylanilide hydroxamic acid) enhances activity of dasatinib (BMS-354825) against imatinib mesylate-sensitive or imatinib mesylate-resistant chronic myelogenous leukemia cells

Warren Fiskus; Michael Pranpat; Maria Balasis; Purva Bali; Veronica Estrella; Sandhya Kumaraswamy; Rekha Rao; Kathy Rocha; Bryan Herger; Francis Y. Lee; Victoria M. Richon; Kapil N. Bhalla

Purpose: We determined the effects of vorinostat [suberoylanilide hydroxamic acid (SAHA)] and/or dasatinib, a dual Abl/Src kinase (tyrosine kinase) inhibitor, on the cultured human (K562 and LAMA-84) or primary chronic myelogenous leukemia (CML) cells, as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and kinase domain-mutant forms of Bcr-Abl. Experimental Design: Following exposure to dasatinib and/or vorinostat, apoptosis, loss of clonogenic survival, as well as the activity and levels of Bcr-Abl and its downstream signaling proteins were determined. Results: Treatment with dasatinib attenuated the levels of autophosphorylated Bcr-Abl, p-CrkL, phospho-signal transducer and activator of transcription 5 (p-STAT5), p-c-Src, and p-Lyn; inhibited the activity of Lyn and c-Src; and induced apoptosis of the cultured CML cells. Combined treatment of cultured human CML and BaF3 cells with vorinostat and dasatinib induced more apoptosis than either agent alone, as well as synergistically induced loss of clonogenic survival, which was associated with greater depletion of Bcr-Abl, p-CrkL, and p-STAT5 levels. Cotreatment with dasatinib and vorinostat also attenuated the levels of Bcr-AblE255K and Bcr-AblT315I and induced apoptosis of BaF3 cells with ectopic expression of the mutant forms of Bcr-Abl. Finally, cotreatment of the primary CML cells with vorinostat and dasatinib induced more loss of cell viability and depleted Bcr-Abl or Bcr-AblT315I, p-STAT5, and p-CrkL levels than either agent alone. Conclusions: As shown here, the preclinical in vitro activity of vorinostat and dasatinib against cultured and primary CML cells supports the in vivo testing of the combination in imatinib mesylate–sensitive and imatinib mesylate–resistant CML cells.


Lancet Oncology | 2017

Clonal haemopoiesis and therapy-related myeloid malignancies in elderly patients: a proof-of-concept, case-control study

Nancy K. Gillis; Markus Ball; Qing Zhang; Zhenjun Ma; YuLong Zhao; Sean J. Yoder; Maria Balasis; Tania Mesa; David Sallman; Jeffrey E. Lancet; Rami S. Komrokji; Alan F. List; Howard L. McLeod; Melissa Alsina; Rachid Baz; Kenneth H. Shain; Dana E. Rollison; Eric Padron

BACKGROUND Clonal haemopoiesis of indeterminate potential (CHIP) is an age-associated genetic event linked to increased risk of primary haematological malignancies and increased all-cause mortality, but the prevalence of CHIP in patients who develop therapy-related myeloid neoplasms is unknown. We did this study to investigate whether chemotherapy-treated patients with cancer who have CHIP are at increased risk of developing therapy-related myeloid neoplasms. METHODS We did a nested, case-control, proof-of-concept study to compare the prevalence of CHIP between patients with cancer who later developed therapy-related myeloid neoplasms (cases) and patients who did not develop these neoplasms (controls). We identified cases from our internal biorepository of 123 357 patients who consented to participate in the Total Cancer Care biobanking protocol at Moffitt Cancer Center (Tampa, FL, USA) between Jan 1, 2006, and June 1, 2016. We included all individuals who were diagnosed with a primary malignancy, were treated with chemotherapy, subsequently developed a therapy-related myeloid neoplasm, and were 70 years or older at either diagnosis. For inclusion in this study, individuals must have had a peripheral blood or mononuclear cell sample collected before the diagnosis of therapy-related myeloid neoplasm. Controls were individuals who were diagnosed with a primary malignancy at age 70 years or older and were treated with chemotherapy but did not develop therapy-related myeloid neoplasms. Controls were matched to cases in at least a 4:1 ratio on the basis of sex, primary tumour type, age at diagnosis, smoking status, chemotherapy drug class, and duration of follow-up. We used sequential targeted and whole-exome sequencing and described clonal evolution in cases for whom paired CHIP and therapy-related myeloid neoplasm samples were available. The primary endpoint of this study was the development of therapy-related myeloid neoplasm and the primary exposure was CHIP. FINDINGS We identified 13 cases and 56 case-matched controls. The prevalence of CHIP in all patients (23 [33%] of 69 patients) was higher than has previously been reported in elderly individuals without cancer (about 10%). Cases had a significantly higher prevalence of CHIP than did matched controls (eight [62%] of 13 cases vs 15 [27%] of 56 controls, p=0·024; odds ratio 5·75, 95% CI 1·52-25·09, p=0·013). The most commonly mutated genes in cases with CHIP were TET2 (three [38%] of eight patients) and TP53(three [38%] of eight patients), whereas controls most often had TET2 mutations (six [40%] of 15 patients). In most (four [67%] of six patients) cases for whom paired CHIP and therapy-related myeloid neoplasm samples were available, the mean allele frequency of CHIP mutations had expanded by the time of the therapy-related myeloid neoplasm diagnosis. However, a subset of paired samples (two [33%] of six patients) had CHIP mutations that decreased in allele frequency, giving way to expansion of a distinct mutant clone. INTERPRETATION Patients with cancer who have CHIP are at increased risk of developing therapy-related myeloid neoplasms. The distribution of CHIP-related gene mutations differs between individuals with therapy-related myeloid neoplasm and those without, suggesting that mutation-specific differences might exist in therapy-related myeloid neoplasm risk. FUNDING Moffitt Cancer Center.


Clinical Cancer Research | 2016

A Multi-Institution Phase I Trial of Ruxolitinib in Patients with Chronic Myelomonocytic Leukemia (CMML)

Eric Padron; Amy E. DeZern; Marcio Andrade-Campos; Kris Vaddi; Peggy Scherle; Qing Zhang; Yan Ma; Maria Balasis; Sarah Tinsley; Hanadi Ramadan; Cassandra Zimmerman; David P. Steensma; Gail J. Roboz; Jeffrey E. Lancet; Alan F. List; Mikkael A. Sekeres; Rami S. Komrokji

Purpose: To conduct a phase I clinical trial exploring the safety and efficacy of ruxolitinib, a JAK1/2 inhibitor, for chronic myelomonocytic leukemia (CMML). Experimental Design: Patients with CMML-1 were included without regard to previous therapy. Key exclusion criteria included an absolute neutrophil count (ANC) <0.25 × 103 cells/dL and a platelet count <35 × 103 cells/dL. Four cohorts were enrolled using a “rolling six” study design, with doses ranging from 5 to 20 mg twice daily of ruxolitinib in 5-mg dose escalations. Results: Between March 2013 and January 2015, 20 patients were enrolled and treated with ruxolitinib. Seventy percent of patients had the proliferative subtype and 47% had higher risk disease by the Global MD Anderson Scoring System. Eight patients (42%) received a prior hypomethylating agent. No dose-limiting toxicities for ruxolitinib were identified. One subject had grade (G)3 thrombocytopenia with no other drug-associated G3 or G4 adverse events. The mean duration of therapy was 122 days (range, 28–409 days). Four had hematologic improvement and one patient had a partial response per 2006 International Working Group (IWG) criteria. Five of 9 patients with splenomegaly had a reduction in spleen size. Ten of 11 patients with reported disease-related symptoms had clinically meaningful or complete resolution. When combining IWG and spleen responses, a total response rate of 35% (n = 7) was identified. Correlative analysis demonstrated a reduction in inflammatory cytokines and GM-CSF–dependent STAT5 phosphorylation. Conclusions: The recommended phase II dose of ruxolitinib is 20 mg twice daily. We demonstrate that ruxolitinib has promising activity in CMML with particular benefit in those with disease-related B symptoms that warrants further study. Clin Cancer Res; 22(15); 3746–54. ©2016 AACR. See related commentary by Solary, p. 3707


Blood | 2017

Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMML and JMML

Akihide Yoshimi; Maria Balasis; Alexis Vedder; Kira Feldman; Yan Ma; Hailing Zhang; Stanley Chun-Wei Lee; Christopher Letson; Sandrine Niyongere; Sydney X. Lu; Markus Ball; Justin Taylor; Qing Zhang; YuLong Zhao; Salma Youssef; Young Rock Chung; Xiao Jing Zhang; Benjamin H. Durham; Wendy Yang; Alan F. List; Mignon L. Loh; Virginia M. Klimek; Michael F. Berger; Elliot Stieglitz; Eric Padron; Omar Abdel-Wahab

Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.


Marine Drugs | 2014

Cyclic Marinopyrrole Derivatives as Disruptors of Mcl-1 and Bcl-xL Binding to Bim

Chunwei Cheng; Yan Liu; Maria Balasis; Nicholas L. Simmons; Jerry Li; Hao Song; Lili Pan; Yong Qin; K. C. Nicolaou; Said M. Sebti; Rongshi Li

A series of novel cyclic marinopyrroles were designed and synthesized. Their activity to disrupt the binding of the pro-apoptotic protein, Bim, to the pro-survival proteins, Mcl-1 and Bcl-xL, was evaluated using ELISA assays. Both atropisomers of marinopyrrole A (1) show similar potency. A tetrabromo congener 9 is two-fold more potent than 1. Two novel cyclic marinopyrroles (3 and 4) are two- to seven-fold more potent than 1.


Marine Drugs | 2014

Marinopyrrole Derivatives with Sulfide Spacers as Selective Disruptors of Mcl-1 Binding to Pro-Apoptotic Protein Bim

Chunwei Cheng; Yan Liu; Maria Balasis; Thomas P. Garner; Jerry Li; Nicholas L. Simmons; Norbert Berndt; Hao Song; Lili Pan; Yong Qin; K. C. Nicolaou; Evripidis Gavathiotis; Said M. Sebti; Rongshi Li

A series of novel marinopyrroles with sulfide and sulphone spacers were designed and synthesized. Their activity to disrupt the binding of the pro-apoptotic protein, Bim, to the pro-survival proteins, Mcl-1 and Bcl-xL, was evaluated using ELISA assays. Fluorescence-quenching (FQ) assays confirmed the direct binding of marinopyrroles to Mcl-1. Benzyl- and benzyl methoxy-containing sulfide derivatives 4 and 5 were highly potent dual Mcl-1/Bim and Bcl-xL/Bim disruptors (IC50 values of 600 and 700 nM), whereas carboxylate-containing sulfide derivative 9 exhibited 16.4-fold more selectivity for disrupting Mcl-1/Bim over Bcl-xL/Bim binding. In addition, a nonsymmetrical marinopyrrole 12 is as equally potent as the parent marinopyrrole A (1) for disrupting both Mcl-1/Bim and Bcl-xL/Bim binding. Some of the derivatives were also active in intact human breast cancer cells where they reduced the levels of Mcl-1, induced programd cell death (apoptosis) and inhibited cell proliferation.


Cell Cycle | 2013

Akt2 and acid ceramidase cooperate to induce cell invasion and resistance to apoptosis

Norbert Berndt; Ronil Patel; Hua Yang; Maria Balasis; Said M. Sebti

Both Akt 2 and acid ceramidase (ASAH1) are found aberrantly overexpressed in cancer cells, but whether these two enzymes cooperate to induce malignant transformation is not known. We found that in immortalized, non-transformed cells, ectopic co-expression of Akt2 and ASAH1 is significantly more effective than expression of each gene alone at inducing cell invasion and at conferring resistance to apoptosis. Consistent with these observations, siRNA-mediated depletion of both Akt2 and ASAH1 is much more potent than depleting each alone at inhibiting cell viability/proliferation and cell invasion. Furthermore, pharmacological inhibitors of Akt (TCN or MK-2206) and ASAH1 (B13) synergize to inhibit cell viability/proliferation, and combinations of these drugs are more effective than single-agent treatments at inhibiting cell invasion. Taken together, the results suggest that these two enzymes cooperate to induce malignant transformation and warrant further preclinical studies to evaluate the potential of combining inhibitors of Akt and ASAH1 to treat cancer.


Bioorganic & Medicinal Chemistry Letters | 2012

Synthesis and evaluation of substituted hexahydronaphthalenes as novel inhibitors of the Mcl-1/BimBH3 interaction.

Young B. Kim; Maria Balasis; Kenichiro Doi; Norbert Berndt; Courtney DuBoulay; Chih-Chi Andrew Hu; Wayne C. Guida; Hong-Gang Wang; Said M. Sebti; Juan R. Del Valle

Mcl-1, an anti-apoptotic member of the Bcl-2 protein family, is overexpressed in a broad range of human cancers and plays a critical role in conferring resistance to chemotherapy. In the course of screening a natural product-like library of sesquiterpenoid analogs, we identified substituted hexahydronaphthalenes that showed activity against the Mcl-1/BimBH3 interaction in vitro. Here, we describe the synthesis of a small library of analogs and their biological evaluation. The most potent inhibitor in the series (19) exhibits an IC(50) of 8.3 μM by ELISA and disrupts the interaction between endogenously expressed Mcl-1 and Bim in cultured MDA-MB-468 breast cancer cells.

Collaboration


Dive into the Maria Balasis's collaboration.

Top Co-Authors

Avatar

Eric Padron

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Kapil N. Bhalla

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Warren Fiskus

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Kathy Rocha

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Michael Pranpat

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Purva Bali

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Alan F. List

University of South Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rami S. Komrokji

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Sandhya Boyapalle

University of South Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge