María Benlloch
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Benlloch.
Journal of Biological Chemistry | 2005
María Benlloch; Angel Ortega; Paula Ferrer; Ramón Segarra; Elena Obrador; Miguel Asensi; Julian Carretero; José M. Estrela
Highly metastatic B16 melanoma (B16M)-F10 cells, as compared with the low metastatic B16M-F1 line, have higher GSH content and preferentially overexpress BCL-2. In addition to its anti-apoptotic properties, BCL-2 inhibits efflux of GSH from B16M-F10 cells and thereby may facilitate metastatic cell resistance against endothelium-induced oxidative/nitrosative stress. Thus, we investigated in B16M-F10 cells which molecular mechanisms channel GSH release and whether their modulation may influence metastatic activity. GSH efflux was abolished in multidrug resistance protein 1 knock-out (MRP-/-1) B16M-F10 transfected with the Bcl-2 gene or in MRP-/-1 B16M-F10 cells incubated with l-methionine, which indicates that GSH release from B16M-F10 cells is channeled through MRP1 and a BCL-2-dependent system (likely related to an l-methionine-sensitive GSH carrier previously detected in hepatocytes). The BCL-2-dependent system was identified as the cystic fibrosis transmembrane conductance regulator, since monoclonal antibodies against this ion channel or H-89 (a protein kinase A-selective inhibitor)-induced inhibition of cystic fibrosis transmembrane conductance regulator gene expression completely blocked the BCL-2-sensitive GSH release. By using a perifusion system that mimics in vivo conditions, we found that GSH depletion in metastatic cells can be achieved by using Bcl-2 antisense oligodeoxynucleotide- and verapamil (an MRP1 activator)-induced acceleration of GSH efflux, in combination with acivicin-induced inhibition of γ-glutamyltranspeptidase (which limits GSH synthesis by preventing cysteine generation from extracellular GSH). When applied under in vivo conditions, this strategy increased tumor cytotoxicity (up to ∼90%) during B16M-F10 cell adhesion to the hepatic sinusoidal endothelium.
Molecular Cancer Therapeutics | 2008
Sonia Priego; Fatima Feddi; Paula Ferrer; Salvador Mena; María Benlloch; Angel Ortega; Julian Carretero; Elena Obrador; Miguel Asensi; José M. Estrela
Colorectal cancer is one of the most common malignancies worldwide. The treatment of advanced colorectal cancer with chemotherapy and radiation has two major problems: development of tumor resistance to therapy and nonspecific toxicity towards normal tissues. Different plant-derived polyphenols show anticancer properties and are pharmacologically safe. In vitro growth of human HT-29 colorectal cancer cells is inhibited (∼56%) by bioavailable concentrations of trans-pterostilbene (trans-3,5-dimethoxy-4′-hydroxystilbene; t-PTER) and quercetin (3,3′,4′,5,6-pentahydroxyflavone; QUER), two structurally related and naturally occurring small polyphenols. I.v. administration of t-PTER and QUER (20 mg/kg × day) inhibits growth of HT-29 xenografts (∼51%). Combined administration of t-PTER + QUER, FOLFOX6 (oxaliplatin, leucovorin, and 5-fluorouracil; a first-line chemotherapy regimen), and radiotherapy (X-rays) eliminates HT-29 cells growing in vivo leading to long-term survival (>120 days). Gene expression analysis of a Bcl-2 family of genes and antioxidant enzymes revealed that t-PTER + QUER treatment preferentially promotes, in HT-29 cells growing in vivo, (a) superoxide dismutase 2 overexpression (∼5.7-fold, via specificity protein 1-dependent transcription regulation) and (b) down-regulation of bcl-2 expression (∼3.3-fold, via inhibition of nuclear factor-κB activation). Antisense oligodeoxynucleotides to human superoxide dismutase 2 and/or ectopic bcl-2 overexpression avoided polyphenols and chemoradiotherapy-induced colorectal cancer elimination and showed that the mangano-type superoxide dismutase and Bcl-2 are key targets in the molecular mechanism activated by the combined application of t-PTER and QUER. [Mol Cancer Ther 2008;7(10):3330–42]
Clinical Cancer Research | 2007
Salvador Mena; María Benlloch; Angel Ortega; Julian Carretero; Elena Obrador; Miguel Asensi; Ignacio Petschen; Bob D. Brown; José M. Estrela
Purpose: Advanced melanoma resists all current therapies, and metastases in the liver are particularly problematic. Prevalent resistance factors include elevated glutathione (GSH) and increased expression of bcl-2 in melanoma cells. GSH has pleiotropic effects promoting cell growth and broad resistance to therapy, whereas Bcl-2 inhibits the activation of apoptosis and contributes to elevation of GSH. This study determined the in vivo efficacy of combination therapies administered while GSH and Bcl-2 were individually and simultaneously decreased in metastatic melanoma lesions. Experimental Design: Highly metastatic murine B16 melanoma (B16M-F10) cells have elevated levels of both GSH and Bcl-2. B16M-F10 cells were injected i.v. to establish metastatic lesions in vivo. GSH was decreased using an l-glutamine–enriched diet and administration of verapamil and acivicin, whereas Bcl-2 was reduced using oligodeoxynucleotide G3139. Paclitaxel, X-rays, tumor necrosis factor-α, and IFN-γ were administered as a combination therapy. Results: Metastatic cells were isolated from liver to confirm the depletion of GSH and Bcl-2 in vivo. Reduction of Bcl-2 and GSH, combined with partial therapies, decreased the number and volume of invasive B16M-F10 foci in liver by up to 99% (P < 0.01). The full combination of paclitaxel, X-rays, and cytokines eliminated B16M-F10 cells from liver and all other systemic disease, leading to long-term survival (>120 days) without recurrence in 90% of mice receiving the full therapy. Toxicity was manageable; the mice recovered quickly, and hematology and clinical chemistry data were representative of accepted clinical toxicities. Conclusions: Our results suggest a new strategy to induce regression of late-stage metastatic melanoma.
Journal of Biological Chemistry | 2006
María Benlloch; Salvador Mena; Paula Ferrer; Elena Obrador; Miguel Asensi; José A. Pellicer; Julian Carretero; Angel Ortega; José M. Estrela
1Mitochondrial glutathione (mtGSH) depletion increases sensitivity of Bcl-2-overexpressing B16 melanoma (B16M)-F10 cells (high metastatic potential) to tumor necrosis factor-α (TNF-α)-induced oxidative stress and death in vitro. In vivo, mtGSH depletion in B16M-F10 cells was achieved by feeding mice (where the B16M-F10 grew as a solid tumor in the footpad) with an l-glutamine (l-Gln)-enriched diet, which promoted in the tumor cells an increase in glutaminase activity, accumulation of cytosolic l-glutamate, and competitive inhibition of GSH transport into mitochondria. l-Gln-adapted B16M-F10 cells, isolated using anti-Met-72 monoclonal antibodies and flow cytometry-coupled cell sorting, were injected into the portal vein to produce hepatic metastases. In l-Gln-adapted invasive (iB16M-Gln+) cells, isolated from the liver by the same methodology and treated with TNF-α and an antisense Bcl-2 oligodeoxynucleotide, viability decreased to ∼12%. iB16M-Gln+ cell death associated with increased generation of \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} and H2O2, opening of the mitochondrial permeability transition pore complex, and release of proapoptotic molecular signals. Activation of cell death mechanisms was prevented by GSH ester-induced mtGSH replenishment. The oxidative stress-resistant survivors showed an adaptive response that includes overexpression of manganese-containing superoxide dismutase (Mn-SOD) and catalase activities. By treating iB16M-Gln+ cells with a double anti- antisense therapy (Bcl-2 and SOD2 antisense oligodeoxynucleotides) and TNF-α, metastatic cell survival decreased to ∼1%. Chemotherapy (taxol plus daunorubicin) easily removed this minimum percentage of survivors. This contribution identifies critical molecules that can be sequentially targeted to facilitate elimination of highly resistant metastatic cells.
Journal of Biological Chemistry | 2007
Paula Ferrer; Miguel Asensi; Sonia Priego; María Benlloch; Salvador Mena; Angel Ortega; Elena Obrador; Juan M. Esteve; José M. Estrela
Intravenous administration to mice of trans-pterostilbene (t-PTER; 3,5-dimethoxy-4′-hydroxystilbene) and quercetin (QUER; 3,3′,4′,5,6-pentahydroxyflavone), two structurally related and naturally occurring small polyphenols, inhibits metastatic growth of highly malignant B16 melanoma F10 (B16M-F10) cells. t-PTER and QUER inhibit bcl-2 expression in metastatic cells, which sensitizes them to vascular endothelium-induced cytotoxicity. However, the molecular mechanism(s) linking polyphenol signaling and bcl-2 expression are unknown. NO is a potential bioregulator of apoptosis with controversial effects on Bcl-2 regulation. Polyphenols may affect NO generation. Short-term exposure (60 min/day) to t-PTER (40 μm) and QUER (20 μm) (approximate mean values of the plasma concentrations measured within the first hour after intravenous administration of 20 mg of each polyphenol/kg) down-regulated inducible NO synthetase in B16M-F10 cells and up-regulated endothelial NO synthetase in the vascular endothelium and thereby facilitated endothelium-induced tumor cytotoxicity. Very low and high NO levels down-regulated bcl-2 expression in B16M-F10 cells. t-PTER and QUER induced a NO shortage-dependent decrease in cAMP-response element-binding protein phosphorylation, a positive regulator of bcl-2 expression, in B16M-F10 cells. On the other hand, during cancer and endothelial cell interaction, t-PTER- and QUER-induced NO release from the vascular endothelium up-regulated neutral sphingomyelinase activity and ceramide generation in B16M-F10 cells. Direct NO-induced cytotoxicity and ceramide-induced mitochondrial permeability transition and apoptosis activation can explain the increased endothelium-induced death of Bcl-2-depleted B16M-F10 cells.
Journal of Medicinal Chemistry | 2017
José M. Estrela; Salvador Mena; Elena Obrador; María Benlloch; Gloria Castellano; Rosario Salvador; Ryan W. Dellinger
Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.
Journal of Biological Chemistry | 2011
Elena Obrador; María Benlloch; José A. Pellicer; Miguel Asensi; José M. Estrela
B16 melanoma F10 (B16-F10) cells with high glutathione (GSH) content show high metastatic activity in vivo. An intertissue flow of GSH, where the liver is the main reservoir, can increase GSH content in metastatic cells and promote their growth. We have studied here possible tumor-derived molecular signals that could activate GSH release from hepatocytes. GSH efflux increases in hepatocytes isolated from mice bearing liver or lung metastases, thus suggesting a systemic mechanism. Fractionation of serum-free conditioned medium from cultured B16-F10 cells and monoclonal antibody-induced neutralization techniques facilitated identification of interleukin (IL)-6 as a tumor-derived molecule promoting GSH efflux in hepatocytes. IL-6 activates GSH release through a methionine-sensitive/organic anion transporter polypeptide 1- and multidrug resistance protein 1-independent channel located on the sinusoidal site of hepatocytes. Specific siRNAs were used to knock down key factors in the main signaling pathways activated by IL-6, which revealed a STAT3-dependent mechanism. Our results show that IL-6 (mainly of tumor origin in B16-F10-bearing mice) may facilitate GSH release from hepatocytes and its interorgan transport to metastatic growing foci.
Cancer Research | 2016
María Benlloch; Soraya L. Valles; Maria L. Rodriguez; J. Antoni Sirerol; Javier Alcacer; José A. Pellicer; Rosario Salvador; Concha Cerdá; Guillermo T. Sáez; José M. Estrela
Polyphenolic phytochemicals have anticancer properties. However, in mechanistic studies lack of correlation to the bioavailable concentrations is a critical issue. We studied the underlying mechanisms using different human melanomas (A2058, MeWo and MelJuso) and pancreatic cancers (AsPC-1 and BxPC-3) (with genetic backgrounds correlating with most tumors in patients), growing in nude mice as xenografts, and pterostilbene (Pter, 3’,5’-dimethoxy-4-stilbenol; abundant in e.g. blueberries and a natural dimethoxylated analog of resveratrol). RESULTS: Intravenous administration of Pter decreased human melanoma and pancreatic cancer growth (an effect associated with lower rates of tumor cell proliferation and increased apoptosis) in vivo. However Pter, at levels measured within the tumors, did not affect cancer growth or viability in vitro. Pter inhibited pituitary production of the adrenocorticotropin hormone (ACTH), decreased plasma levels of corticosterone and, thereby, down regulated the glucocorticoid receptor- and nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-dependent antioxidant defense system in growing cancers (i.e. the glutathione and thioredoxin systems, superoxide dismutases, catalase, and NADPH supplying dehydrogenases). Exogenous corticosterone or genetically-induced Nrf2 overexpression in the cancer cells prevented the inhibition of tumor growth and antioxidant defenses in these malignant cells. Glutathione depletion (selected as a potential anti-cancer strategy) facilitated the complete elimination by chemotherapy of cancer cells isolated from mice treated with Pter. CONCLUSIONS: This report shows a novel link between a neuroendocrine system- and stress response-dependent mechanism and the regulation of cancer growth in vivo. Natural polyphenols can interfere with the growth and defense of cancer cells by down-regulating the pituitary gland-dependent ACTH synthesis. Lower levels of plasma ACTH cause a decrease in the suprarenal glands-dependent glucocorticoid production, thus decreasing the glucocorticoid receptor and Nrf2-dependent signaling/transcription and the antioxidant protection of melanoma and pancreatic cancer cells. Hence facilitating identification of molecular targets to sensitize aggressive cancers to oncotherapy. Citation Format: Maria Benlloch, Soraya L. Valles, Maria L. Rodriguez, J. Antoni Sirerol, Javier Alcacer, Jose Pellicer, Rosario Salvador, Concha Cerda, Guillermo T. Saez, Jose M. Estrela. Pterostilbene, a natural phytoalexin, weakens the antioxidant defenses of aggressive cancer cells in vivo: a pituitary gland- and Nrf2-dependent mechanism. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 2810.
Neoplasia | 2005
Paula Ferrer; Miguel Asensi; Ramón Segarra; Angel Ortega; María Benlloch; Elena Obrador; Maria T. Varea; Gregorio Asensio; Leonardo Jordá; José M. Estrela
Molecular Cancer Therapeutics | 2007
Salvador Mena; María Benlloch; Angel Ortega; Julian Carretero; Elena Obrador; José A. Pellicer; Bob Brown; José M. Estrela