Maria Bergemann
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Bergemann.
Monthly Notices of the Royal Astronomical Society | 2012
Karin Lind; Maria Bergemann; Martin Asplund
We investigate departures from local thermodynamic equilibrium (NLTE) in the line formation of neutral and singly ionised iron lines and their impac t on spectroscopic stellar parameters. The calculations are performed for an extensive grid of 1D MARCS models of metal-rich and metal-poor late-type dwarfs and giants. We find that iron abundances derived from Fe I lines are increasingly underestimated in hotter, lower sur face-gravity, and more metal-poor stars, in a simple and well-defined pattern, while LTE is usua lly a realistic approximation for Fe II lines. For the vast majority of dwarfs and giants, the pe rturbed ionisation balance of Fe I and Fe II is the main relevant NLTE effect to consider in the determination of spectroscopic parameters, while for extremely metal-poor stars and hot giant stars significant impact is seen also on the excitation balance and on the microturbulence determination from Fe I lines.
Monthly Notices of the Royal Astronomical Society | 2015
G. M. De Silva; Kenneth C. Freeman; Joss Bland-Hawthorn; Sarah L. Martell; E. Wylie De Boer; Martin Asplund; Stefan C. Keller; Sanjib Sharma; Daniel B. Zucker; Tomaž Zwitter; Borja Anguiano; Carlos Bacigalupo; D. Bayliss; M.A. Beavis; Maria Bergemann; Simon Campbell; R. Cannon; Daniela Carollo; Luca Casagrande; Andrew R. Casey; G. S. Da Costa; Valentina D'Orazi; Aaron Dotter; Ly Duong; Alexander Heger; Michael J. Ireland; Prajwal R. Kafle; Janez Kos; John C. Lattanzio; Geraint F. Lewis
The Galactic Archaeology with HERMES (GALAH) survey is a large high-resolution spectroscopic survey using the newly commissioned High Efficiency and Resolution Multi-Element Spectrograph (HERMES) on the Anglo-Australian Telescope. The HERMES spectrograph provides high-resolution (R ~ 28 000) spectra in four passbands for 392 stars simultaneously over a 2 deg field of view. The goal of the survey is to unravel the formation and evolutionary history of the Milky Way, using fossil remnants of ancient star formation events which have been disrupted and are now dispersed throughout the Galaxy. Chemical tagging seeks to identify such dispersed remnants solely from their common and unique chemical signatures; these groups are unidentifiable from their spatial, photometric or kinematic properties. To carry out chemical tagging, the GALAH survey will acquire spectra for a million stars down to V ~ 14. The HERMES spectra of FGK stars contain absorption lines from 29 elements including light proton-capture elements, α-elements, odd-Z elements, iron-peak elements and n-capture elements from the light and heavy s-process and the r-process. This paper describes the motivation and planned execution of the GALAH survey, and presents some results on the first-light performance of HERMES.
Monthly Notices of the Royal Astronomical Society | 2012
Maria Bergemann; Karin Lind; Remo Collet; Zazralt Magic; Martin Asplund
We investigate departures from LTE in the line formation of Fe for a number of well-studied late-type stars in different evolutionary stages. A new model of Fe atom was constructed from the most up-to-date theoretical and experimental atomic data available so far. Non-local thermodynamic equilibrium (NLTE) line formation calculations for Fe were performed using 1D hydrostatic MARCS and MAFAGS-OS model atmospheres, as wellas the spatial and temporal average stratifications from full 3D hydrodynamical s imulations of stellar convection computed using the Stagger code. It is shown that the Fe I/Fe II ionization balance can be well established with the 1D and mean 3D models under NLTE including calibrated inelastic collisions with H I calculated from the Drawin’s (1969) form ulae. Strong low-excitation Fe I lines are very sensitive to the atmospheric structure; clas sical 1D models fail to provide consistent excitation balance, particularly so for cool metal-po or stars. A better agreement between Fe I lines spanning a range of excitation potentials is obtai ned with the mean 3D models. Mean NLTE metallicities determined for the standard stars using the 1D and mean 3D models are fully consistent. Also, the NLTE spectroscopic effective temperatures and gravities from ionization balance agree with that determined by other methods, e.g., infrared flux method and parallaxes, if one of the stellar parameters is constrai ned independently.
Astronomy and Astrophysics | 2014
P. Jofre; Ulrike Heiter; Caroline Soubiran; S. Blanco-Cuaresma; C. C. Worley; E. Pancino; T. Cantat-Gaudin; L. Magrini; Maria Bergemann; J. I. González Hernández; V. Hill; C. Lardo; P. de Laverny; Karin Lind; T. Masseron; D. Montes; A. Mucciarelli; Thomas Nordlander; A. Recto Blanco; J. Sobeck; R. Sordo; S. G. Sousa; H. M. Tabernero; A. Vallenari; S. Van Eck
Context. To calibrate automatic pipelines that determine atmospheric parameters of stars, one needs a sample of stars, or “benchmark stars”, with well-defined parameters to be used as a reference. Aims. We provide detailed documentation of the iron abundance determination of the 34 FGK-type benchmark stars that are selected to be the pillars for calibration of the one billion Gaia stars. They cover a wide range of temperatures, surface gravities, and metallicities. Methods. Up to seven different methods were used to analyze an observed spectral library of high resolutions and high signal-to-noise ratios. The metallicity was determined by assuming a value of effective temperature and surface gravity obtained from fundamental relations; that is, these parameters were known a priori and independently from the spectra. Results. We present a set of metallicity values obtained in a homogeneous way for our sample of benchmark stars. In addition to this value, we provide detailed documentation of the associated uncertainties. Finally, we report a value of the metallicity of the cool giant ψ Phe for the first time.
Astronomy and Astrophysics | 2015
Pat Scott; Martin Asplund; Nicolas Grevesse; Maria Bergemann; A. Jacques Sauval
We redetermine the abundances of all iron group nuclei in the Sun, based on neutral and singly-ionised lines of Sc, Ti, V, Mn, Fe, Co and Ni in the solar spectrum. We employ a realistic 3D hydrodynamic model solar atmosphere, corrections for departures from local thermodynamic equilibrium (NLTE), stringent line selection procedures and high quality observational data. We have scoured the literature for the best quality oscillator strengths, hyperfine constants and isotopic separations available for our chosen lines. We find log ∈ = 3.16 ± 0.04, log ∈ = 4.93 ± 0.04, log ∈ = 3.89 ± 0.08, log ∈ = 5.62 ± 0.04, log ∈ = 5.42 ± 0.04, log ∈ = 7.47 ± 0.04, log ∈ = 4.93 ± 0.05 and log ∈ = 6.20 ± 0.04. Our uncertainties factor in both statistical and systematic errors (the latter estimated for possible errors in the model atmospheres and NLTE line formation). The new abundances are generally in good agreement with the CI meteoritic abundances but with some notable exceptions. This analysis constitutes both a full exposition and a slight update of the preliminary results we presented in Asplund et al. (2009, ARA&A, 47, 481), including full line lists and details of all input data we employed.
Astronomy and Astrophysics | 2008
Maria Bergemann; Thomas Gehren
Aims. Following our solar work, we perform NLTE calculations of the Mn abundance for fourteen stars with [Fe/H] from 0 to -2.5, mainly to show how NLTE affects Mn abundances in cool stars of different metallicities. Methods. The spectrum synthesis and Mn abundances are based on statistical equilibrium calculations using various estimates fo r the influence of hydrogen collisions. Results. The NLTE abundances of Mn in all studied stars are systematically higher than the LTE abundances. At low metallicities, the NLTE abundance corrections may run up to 0.5 - 0.7 dex. Instead of a strong depletion of Mn relative to Fe in metal-poor stars as found by the other authors, we only find slightly subsolar values of [Mn /Fe] throughout the range of metallicities analyzed here. Conclusions. The [Mn/Fe] trend in metal-poor stars is inconsistent with the predi ctions of galactic chemical evolution models, where Mn is less produced than Fe.
Astronomy and Astrophysics | 2014
Maria Bergemann; Gregory R. Ruchti; Aldo M. Serenelli; Sofia Feltzing; Alan Alves-Brito; Martin Asplund; Thomas Bensby; P. Gruiters; Ulrike Heiter; A. Hourihane; A. Korn; Karin Lind; A. F. Marino; P. Jofre; Thomas Nordlander; Nils Ryde; C. C. Worley; G. Gilmore; S. Randich; Annette M. N. Ferguson; R. D. Jeffries; G. Micela; I. Negueruela; T. Prusti; H.-W. Rix; A. Vallenari; Emilio J. Alfaro; C. Allende Prieto; A. Bragaglia; S. E. Koposov
We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.
Monthly Notices of the Royal Astronomical Society | 2014
A. F. Marino; A. P. Milone; Norbert Przybilla; Maria Bergemann; Karin Lind; Martin Asplund; S. Cassisi; Marcio Catelan; Luca Casagrande; A.A.R Valcarce; L. R. Bedin; Cristián Cortés; F. D'Antona; Helmut Jerjen; Giampaolo Piotto; Katharine J. Schlesinger; M. Zoccali; R. Angeloni
We present an abundance analysis of 96 horizontal branch (HB) stars in NGC 2808, a globular cluster exhibiting a complex multiple stellar population p attern. These stars are distributed in different portions of the HB and cover a wide range of temperature. By studying the chemical abundances of this sample, we explore the connection between HB morphology and the chemical enrichment history of multiple stellar populatio ns. For stars lying on the red HB, we use GIRAFFE and UVES spectra to determine Na, Mg, Si, Ca, Sc, Ti, Cr, Mn, Fe, Ni, Zn, Y, Ba, and Nd abundances. For colder, blue HB stars, we derive abundances for Na, primarily from GIRAFFE spectra. We were also able to measure direct NLTE He abundances for a subset of these blue HB stars with temperature higher than∼9000 K. Our results show that: (i) HB stars in NGC 2808 show different content in Na depending on their position in the color-magnitude diagram, with blue HB stars having higher Na than red HB stars; (ii) the red HB is not consistent with an uniform chemical abundance, with slightly warmer stars exhibiting a statistically significant higher Na content; and (iii) our subsample of blue HB stars with He abundances shows evidence of enhancement with respect to the predicted primordial He ‐ ‐ ‐ ‐
Astronomy and Astrophysics | 2012
Jorge Melendez; Maria Bergemann; Judith G. Cohen; Michael Endl; Amanda I. Karakas; Ivan Ramirez; William D. Cochran; David Yong; Phillip J. MacQueen; Chiaki Kobayashi; Martin Asplund
Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R ~ 100 000) high S/N (600–650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of σ ≲ 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as σ ≃ 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 ± 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only + 0.02 ± 0.02 dex, +0.02 ± 0.01 dex and +0.01 ± 0.01 km s^(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 ± 0.02 M_⊙ and that it is ~1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T_(cond) ≳ 1000 K) are slightly (~0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T_(cond) in differential abundances (twins − HIP 56948) can be reproduced very well by adding ~3 M_⊕ of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.
Monthly Notices of the Royal Astronomical Society | 2013
Aldo M. Serenelli; Maria Bergemann; Gregory R. Ruchti; Luca Casagrande
For studies of Galactic evolution, the accurate characterization of stars in terms of their evolutionary stage and population membership is of fundamental importance. A standard approach relies on extracting this information from stellar evolution models but requires the effective temperature, surface gravity and metallicity of a star obtained by independent means. In previous work, we determined accurate effective temperatures and non-local thermodynamic equilibrium log g and [Fe/H] (NLTE-Opt) for a large sample of metal-poor stars, -3 < [Fe/H] < -0.5, selected from the Radial Velocity Experiment (RAVE) survey. As a continuation of that work, we derive here their masses, ages and distances using a Bayesian scheme and GARSTEC stellar tracks. For comparison, we also use stellar parameters determined from the widely used 1D LTE excitation-ionization balance of Fe (LTE-Fe). We find that the latter leads to systematically underestimated stellar ages, by 10-30 per cent, but overestimated masses and distances. Metal-poor giants suffer from the largest fractional distance biases of 70 per cent. Furthermore, we compare our results with those released by the RAVE collaboration (DR3) for the stars in common. This reveals -400 to +400K offsets in effective temperature, -0.5 to 1 dex offsets in surface gravity and 10 to 70 per cent in distances. The systematic trends strongly resemble the correlation we find between the NLTE-Opt and LTE-Fe parameters, indicating that the RAVE DR3 data may be affected by the physical limitations of the 1D LTE synthetic spectra. Our results bear on any study, where spectrophotometric distances underlie stellar kinematics. In particular, they shed new light on the debated controversy about the Galactic halo origin raised by the SDSS/SEGUE observations. (Less)