Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Bernadete Riemma Pierre is active.

Publication


Featured researches published by Maria Bernadete Riemma Pierre.


Archives of Dermatological Research | 2011

Liposomal systems as drug delivery vehicles for dermal and transdermal applications

Maria Bernadete Riemma Pierre; Irina dos Santos Miranda Costa

Enhancement strategies are necessary to improve the dermal/transdermal bioavailability of drugs applied to the skin due to its amazing barrier, the stratum corneum. Strategies to overcome this barrier, thus improving drug release to the skin include the use of penetration enhancers, specific delivery systems, supersaturated solutions and physical methods (iontophoresis, electroporation and ultrasound). Delivery of active agents to the skin by liposomal carriers has improved topical therapy in the field of dermatology. The interest in these carriers is based on their potential to enclose various types of biological materials and to deliver them to diverse cell types. Particularly, in recent years liposomes have been shown to be a promising drug-delivery system to the skin. Their use may produce several-fold higher drug concentrations in the epidermis and dermis and lower systemic concentrations when compared to conventional dosage forms. On the other hand, special characteristic vesicles like ethosomes, transfersomes and niosomes may be potential transdermal delivery systems for ionic molecules and polypeptides.


Current Drug Targets | 2014

Microneedle-Based Drug Delivery Systems for Transdermal Route

Maria Bernadete Riemma Pierre; Fábia Cristina Rossetti

Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skins barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drugs direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.


Aaps Pharmscitech | 2012

In Vitro Characterization of Chitosan Gels for Buccal Delivery of Celecoxib: Influence of a Penetration Enhancer

Yara Peluso Cid; Vinícius Pedrazzi; Valeria Pereira de Sousa; Maria Bernadete Riemma Pierre

Celecoxib (Cx) shows high efficacy in the treatment of osteoarthritis and rheumatoid arthritis as a result of its high specificity for COX-2, without gastrolesivity or interference with platelet function at therapeutic concentrations. Besides of anti-inflammatory effects, Cx also has a potential role for oral cancer chemoprevention. For these conditions, oral administration in long-term treatment is a concern due to its systemic side effects. However, local application at the site of injury (e.g., buccal inflammation conditions or chemoprevention of oral cancer) is a promising way to reduce its toxicity. In this study, the in vitro characterization of mucoadhesive chitosan (CHT) gels associated to Azone® was assessed to explore the potential buccal mucosal administration of Cx in this tissue. Rheological properties of gels were analyzed by a rheometer with cone-plate geometry. In vitro Cx release and permeability studies used artificial membranes and pig cheek mucosa, respectively. Mucoadhesion were measured with a universal test machine. CHT gels (3.0%) containing 2.0% or 3.0% Az showed more appropriate characteristics compared to the others: pH values, rheology, higher amount of Cx retained in the mucosa, and minimal permeation through mucosa, besides the highest mucoadhesion values, ideal for buccal application. Moreover, the flux (J) and amounts of drug released decreased with increased CHT and Az concentrations. CHT gels (3.0%) associated with 2.0% or 3.0% Az may be considered potential delivery systems for buccal administration of Cx.


Aaps Pharmscitech | 2010

A novel transdermal delivery system for the anti-inflammatory lumiracoxib: influence of oleic acid on in vitro percutaneous absorption and in vivo potential cutaneous irritation.

Tailane Sant’Anna Moreira; Valeria Pereira de Sousa; Maria Bernadete Riemma Pierre

Transdermal delivery of non-steroidal anti-inflammatory drugs may be an interesting strategy for delivering these drugs to the diseased site, but it would be ineffective due to low skin permeability. We investigated whether oleic acid (OA), a lipid penetration enhancer in poloxamer gels named poloxamer-based delivery systems (PBDS), can improve lumiracoxib (LM) delivery to/through the skin. The LM partition coefficient (K) studies were carried out in order to evaluate the drug lipophilicity grade (Koctanol/buffer), showing values >1 which demonstrated its high lipophilicity. Both in vitro percutaneous absorption and skin retention studies of LM were measured in the presence or absence of OA (in different concentrations) in PBDS using porcine ear skin. The flux of in vitro percutaneous absorption and in vitro retention of LM in viable epidermis increased in the presence of 10.0% (w/w) OA in 25.0% (w/w) poloxamer gel. In vivo cutaneous irritation potential was carried out in rabbits showing that this formulation did not provide primary or cumulative cutaneous irritability in animal model. The results showed that 25.0% poloxamer gel containing 10.0% OA is potential transdermal delivery system for LM.


Journal of Photochemistry and Photobiology B-biology | 2014

Chitosan-based mucoadhesive films containing 5-aminolevulinic acid for buccal cancer’s treatment

Irina dos Santos Miranda Costa; Renata Pereira Abranches; Maria Teresa Junqueira Garcia; Maria Bernadete Riemma Pierre

Photodynamic therapy (PDT) is a relatively new method to treat various kinds of tumors, including those of the oral cavity. The topical 5-ALA-PDT treatment for tumors of the oral mucosa is preferred, since when administered systemically, there is a general photosensitization drawback in the patient. However, 5-ALA is a hydrophilic molecule and its penetration and retention is limited by topical route, including oral mucosa. We propose a topical delivery system of chitosan-based mucoadhesive film, aiming to promote greater retention of 5-ALA in tissue. The chitosan (CHT) films (4% w/w) were prepared using the solvent evaporation/casting technique. They were tested without 5-ALA resulting in permeability to water vapor (W.V.P=2.15-8.54 g mm/(h cm(2)Pa) swelling ∼300.0% (±10.5) at 4 h or 24 h and in vitro residence time >24 h for all tests. CHT films containing 10.0% (w/w) 5-ALA have resulted in average weight of 0.22 g and thickness of 0.608 mm as suitable characteristics for oral application. In the presence of CHT films both in vitro permeation and retention of 5-ALA (1.0% or 10.0%) were increased. However, 10.0% 5-ALA presented highest values of permeation and retention (∼4 and 17 times respectively, compared to propylene glycol vehicle). On the other hand, in vitro mucoadhesion of CHT films was decreased (18.2-fold and 3.1-fold) by 5-ALA addition (1.0% or 10.0% respectively). However, CHT film containing 10.0% of 5-ALA can be a potential delivery system for topical use in the treatment of tumors of the oral cavity using PDT because it favored the retention of 5-ALA in this tissue and has shown convenient mucoadhesion.


Journal of Pharmacy and Pharmaceutical Sciences | 2010

Influence of oleic acid on the rheology and in vitro release of lumiracoxib from poloxamer gels.

Tailane Sant’Anna Moreira; Valeria Pereira de Sousa; Maria Bernadete Riemma Pierre

PURPOSE Transdermal delivery of anti-inflammatory lumiracoxib (LM) could be an interesting strategy to avoid the side effects associated with systemic delivery, but it is ineffective due to the drug poor skin penetration. We have investigated the effects of oleic acid (OA), a lipid penetration enhancer, on the in vitro release of LM from poloxamer-based delivery systems (PBDS). The rheological behavior (shear rate dependent viscosity) and gelation temperature through measurements of optimal sol-gel transition temperatures (Tsol-gel) were also carried out in these systems. METHODS In vitro release studies of LM from PBDS were performed using cellulose acetate as artificial membrane mounted in a diffusion system. The amount of LM released was divided by exposition area (microg/cm2) and these values were plotted as function of the time (h). The flux of the drug across the membrane (J) was calculated from the slope of the linear portion of the plot and expressed as microg/cm2. h -1. The determination of viscosity was carried out at different shear rates (gamma) between 0.1- 1000 S-1 using a parallel plate rheometer. Oscillatory measurements using a cone-plate geometry rheometer surrounded by a double jacket with temperature varying 4-40 degrees C, was used in order to determine Tsol-gel. RESULTS Increase of both polymer and OA concentrations increases the viscosity of the gels and consequently reduces the in vitro LM release from the PBDS, mainly for gels containing OA at 10.0% compared to other concentrations of the penetration enhancer. Tsol-gel transition temperature was decreased by increasing viscosity; in some cases the formulation was already a gel at room temperature. Rheological studies showed a pseudoplastic behavior, which facilitates the flow and improves the spreading characteristics of the formulations. CONCLUSIONS Taken together, the results showed that poloxamer gels are good potential delivery systems for LM, leading to a sustained release, and also have appropriate rheological characteristics. Novelty of the work: A transdermal delivery of non-steroidal antinflammatory drugs like lumiracoxib (LM) can be an interesting alternative to the oral route of this drug, since it was recently withdraw of the market due to the liver damage when systemically administered in tablets as dosage form. There are no transdermal formulations of LM and it could be an alternative to treat inflammation caused by arthritis or arthrosis. Then, an adequate delivery system to LM is necessary in order to release the drug properly from the PBDS as well as have good characteristics related to semi-solid preparations for transdermal application, which were evaluated through in vitro release studies and rheological behavior in this paper, respectively.


Photodiagnosis and Photodynamic Therapy | 2015

Using chitosan gels as a toluidine blue O delivery system for photodynamic therapy of buccal cancer: In vitro and in vivo studies.

Thierllen Barroso Graciano; Tatielle Soares Coutinho; Camila Beatriz Cressoni; Cristhiane de Paula Freitas; Maria Bernadete Riemma Pierre; Sanívia Aparecida de Lima Pereira; Marcos Massao Shimano; Renata Cristina da Cunha Frange; Maria Teresa Junqueira Garcia

BACKGROUND Photodynamic therapy (PDT) is an emerging treatment that has demonstrated potential for the clinical treatment of buccal cancer. It is based on the photoactivation of a photosensitizer (PS) when irradiated by light at a specific wavelength. The light-excited PS generates reactive oxygen species that cause the destruction of tumor cells by apoptosis or necrosis. Toluidine Blue O (TBO) is a PS that has shown potential for PDT in cancer treatment. However, saliva and mechanical activities quickly remove the PS from the surface of the buccal mucosa. Therefore, the bioavailability of PS at the surface of target tissues is reduced. The aim of this study was to evaluate the potential of chitosan (CH) gels in TBO delivery to buccal tissue. METHODS CH gels were obtained at different concentrations and their physico-chemical properties (pH and rheology), mucoadhesion, in vitro release profile, in vivo retention and in vivo efficacy by the ability to induce cell apoptosis were evaluated. RESULTS CH-based mucoadhesive gels optimized the release and adherence of preparations at the target site. Specifically, 4% (w/w) CH gel showed adequate properties for buccal use, such as pH value, mucoadhesion, pseudoplastic behavior, extended release, minimal permeation and higher TBO retention by the mucosa. In vivo studies showed the potential of the gel to enhance TBO retention and induce cell apoptosis after laser irradiation. CONCLUSION 4% (w/w) CH based mucoadhesive gel can be explored as a TBO delivery system in the PDT of oral cancer.


Biomedical Chromatography | 2011

Celecoxib determination in different layers of skin by a newly developed and validated HPLC-UV method

Fabíola Silva Garcia Praça; Maria Vitória Lopes Badra Bentley; Marilisa Guimarães Lara; Maria Bernadete Riemma Pierre

A simple, rapid and sensitive analytical procedure for the measurement of celecoxib (CXB) levels in skin samples after in vitro penetration studies was developed and validated. In vitro permeability studies in porcine skin were performed for quantification of CXB at different layers of skin, the stratum corneum (SC) and epidermis plus dermis (EP + D) as well as in the acceptor solution (AS) to assess CXB permeation through skin. CXB was quantified by HPLC using a C18 column and UV detection at 251 nm. The mobile phase was methanol-water 72:28 (v/v) and the flow-rate was 0.8 mL/min. The CXB retention time was 5 min. The assay was linear for CBX in the concentration range of 0.1-3.0 μg/mL in the AS (drug permeated through skin) and 5.0-50.0 μg/mL for drug retained in SC and [EP + D] in vitro. The linear correlation coefficients for the different calibration curves were equal or greater than 0.99. Intra- and inter-assay variabilities were below 8.0%. Extraction of CXB from skin samples showed recoveries higher than 95.0% after 15 min of ultrasonic sound and centrifugation at 2500 rpm for 3 min. The method was considered appropriate for the assay of CXB in skin samples, after in vitro cutaneous penetration studies.


Aaps Pharmscitech | 2014

Liquid Crystalline Systems for Transdermal Delivery of Celecoxib: In Vitro Drug Release and Skin Permeation Studies

Éder André Estracanholli; Fabíola Silva Garcia Praça; Ana L. B. Cintra; Maria Bernadete Riemma Pierre; Marilisa Guimarães Lara

Liquid crystalline systems of monoolein/water could be a promising approach for the delivery of celecoxib (CXB) to the skin because these systems can sustain drug release, improve drug penetration into the skin layers and minimize side effects. This study evaluated the potential of these systems for the delivery of CXB into the skin based on in vitro drug release and skin permeation studies. The amount of CXB that permeated into and/or was retained in the skin was assayed using an HPLC method. Polarizing light microscopy studies showed that liquid crystalline systems of monoolein/water were formed in the presence of CXB, without any changes in the mesophases. The liquid crystalline systems decreased drug release when compared to control solution. Drug release was independent of the initial water content of the systems and CXB was released from cubic phase systems, irrespective of the initial water content. The systems released the CXB following zero-order release kinetics. In vitro drug permeation studies showed that cubic phase systems allowed drug permeation and retention in the skin layers. Cubic phase systems of monoolein/water may be promising vehicles for the delivery of CXB in/through the skin because it improved CXB skin permeation compared with the control solution.


European Journal of Pharmaceutical Sciences | 2016

Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: Nanodispersions of liquid-crystalline phase as nanocarriers.

Fábia Cristina Rossetti; Lívia Vieira Depieri; Fabíola Silva Garcia Praça; José Orestes Del Ciampo; M.C.A. Fantini; Maria Bernadete Riemma Pierre; Antonio C. Tedesco; Maria Vitória Lopes Badra Bentley

Nanodispersions of liquid-crystalline phases (NLPs) composed of monoolein and oleic acid were chosen as nanocarriers to improve the topical retention of the photosensitizer protoporphyrin IX (PpIX) and thereby optimize photodynamic therapy (PDT) using this photosensitizer. The nanodispersions were characterized by polarized light microscopy, small-angle X-ray diffraction and dynamic light scattering. The stability and encapsulation efficiency (EE%) of the nanodispersions were also evaluated. In vitro and in vivo skin penetration studies were performed to determine the potential of the nanodispersions for cutaneous application. In addition, skin penetration and skin irritancy (in an animal model) after in vivo application were visualized by fluorescence light microscopy. The nanodispersion obtained was characterized as a monodisperse system (~150.0 nm) of hexagonal liquid-crystalline phase, which provided a high encapsulation efficiency of PpIX (~88%) that remained stable over 90 days of investigation. Skin penetration studies demonstrated that the nanodispersion enhanced PpIX skin uptake 11.8- and 3.3-fold (in vitro) and 23.6- and 20.8-fold (in vivo) compared to the PpIX skin uptake of control formulations, respectively. In addition, the hexagonal phase nanodispersion did not cause skin irritation after application for two consecutive days. Overall, the results show that the nanocarrier developed is suitable for use in topical PDT with PpIX.

Collaboration


Dive into the Maria Bernadete Riemma Pierre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria Pereira de Sousa

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tailane Sant’Anna Moreira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irina dos Santos Miranda Costa

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mônica Freiman de Souza Ramos

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Oliesia Gonzalez Quiñones

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Alexandre dos Santos Pyrrho

Federal University of Rio de Janeiro

View shared research outputs
Researchain Logo
Decentralizing Knowledge