Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Bloksgaard is active.

Publication


Featured researches published by Maria Bloksgaard.


Journal of Investigative Dermatology | 2012

The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety

Ichiro Iwai; HongMei Han; Lianne den Hollander; Stina Svensson; Lars-Göran Öfverstedt; Jamshed Anwar; Jonathan R. Brewer; Maria Bloksgaard; Aurelie Laloeuf; Daniel Nosek; Sergej Masich; Luis A. Bagatolli; Ulf Skoglund; Lars Norlén

The skin barrier is fundamental to terrestrial life and its evolution; it upholds homeostasis and protects against the environment. Skin barrier capacity is controlled by lipids that fill the extracellular space of the skins surface layer--the stratum corneum. Here we report on the determination of the molecular organization of the skins lipid matrix in situ, in its near-native state, using a methodological approach combining very high magnification cryo-electron microscopy (EM) of vitreous skin section defocus series, molecular modeling, and EM simulation. The lipids are organized in an arrangement not previously described in a biological system-stacked bilayers of fully extended ceramides (CERs) with cholesterol molecules associated with the CER sphingoid moiety. This arrangement rationalizes the skins low permeability toward water and toward hydrophilic and lipophilic substances, as well as the skin barriers robustness toward hydration and dehydration, environmental temperature and pressure changes, stretching, compression, bending, and shearing.


Journal of Biological Chemistry | 2009

Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis.

Stefania Carobbio; Francesca Frigerio; Blanca Rubi; Laurene Marine Vetterli; Maria Bloksgaard; Asllan Gjinovci; Shirin Pournourmohammadi; Pedro Luis Herrera; Walter Reith; Susanne Mandrup; Pierre Maechler

Insulin exocytosis is regulated in pancreatic ß-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been tested yet in animal models. Here, we generated transgenic mice, named ßGlud1–/–, with ß-cell-specific GDH deletion. Our results show that GDH plays an essential role in the full development of the insulin secretory response. In situ pancreatic perfusion revealed that glucose-stimulated insulin secretion was reduced by 37% in ßGlud1–/–. Furthermore, isolated islets with either constitutive or acute adenovirus-mediated knock-out of GDH showed a 49 and 38% reduction in glucose-induced insulin release, respectively. Adenovirus-mediated re-expression of GDH in ßGlud1–/– islets fully restored glucose-induced insulin release. Thus, GDH appears to account for about 40% of glucose-stimulated insulin secretion and to lack redundant mechanisms. In ßGlud1–/– mice, the reduced secretory capacity resulted in lower plasma insulin levels in response to both feeding and glucose load, while body weight gain was preserved. The results demonstrate that GDH is essential for the full development of the secretory response in ß-cells. However, maximal secretory capacity is not required for maintenance of glucose homeostasis in normo-caloric conditions.


Journal of Biological Chemistry | 2011

Disruption of the Acyl-CoA-binding Protein Gene Delays Hepatic Adaptation to Metabolic Changes at Weaning

Ditte Neess; Maria Bloksgaard; Signe Bek; Ann-Britt Marcher; Ida Coordt Elle; Torben Helledie; Marianne Due; Vasileios Pagmantidis; Bente Finsen; Johannes Wilbertz; Mogens Kruhøffer; Nils J. Færgeman; Susanne Mandrup

The acyl-CoA-binding protein (ACBP)/diazepam binding inhibitor is an intracellular protein that binds C14–C22 acyl-CoA esters and is thought to act as an acyl-CoA transporter. In vitro analyses have indicated that ACBP can transport acyl-CoA esters between different enzymatic systems; however, little is known about the in vivo function in mammalian cells. We have generated mice with targeted disruption of ACBP (ACBP−/−). These mice are viable and fertile and develop normally. However, around weaning, the ACBP−/− mice go through a crisis with overall weakness and a slightly decreased growth rate. Using microarray analysis, we show that the liver of ACBP−/− mice displays a significantly delayed adaptation to weaning with late induction of target genes of the sterol regulatory element-binding protein (SREBP) family. As a result, hepatic de novo cholesterogenesis is decreased at weaning. The delayed induction of SREBP target genes around weaning is caused by a compromised processing and decreased expression of SREBP precursors, leading to reduced binding of SREBP to target sites in chromatin. In conclusion, lack of ACBP interferes with the normal metabolic adaptation to weaning and leads to delayed induction of the lipogenic gene program in the liver.


Journal of Investigative Dermatology | 2013

Spatially Resolved Two-Color Diffusion Measurements in Human Skin Applied to Transdermal Liposome Penetration

Jonathan R. Brewer; Maria Bloksgaard; Jakub Kubiak; Jens Ahm Sørensen; Luis A. Bagatolli

A multiphoton excitation-based fluorescence fluctuation spectroscopy method, Raster image correlation spectroscopy (RICS), was used to measure the local diffusion coefficients of distinct model fluorescent substances in excised human skin. In combination with structural information obtained by multiphoton excitation fluorescence microscopy imaging, the acquired diffusion information was processed to construct spatially resolved diffusion maps at different depths of the stratum corneum (SC). Experiments using amphiphilic and hydrophilic fluorescently labeled molecules show that their diffusion in SC is very heterogeneous on a microscopic scale. This diffusion-based strategy was further exploited to investigate the integrity of liposomes during transdermal penetration. Specifically, the diffusion of dual-color fluorescently labeled liposomes--containing an amphiphilic fluorophore in the lipid bilayer and a hydrophilic fluorophore encapsulated in the liposome lumen--was measured using cross-correlation RICS. This type of experiment allows discrimination between separate (uncorrelated) and joint (correlated) diffusion of the two different fluorescent probes, giving information about liposome integrity. Independent of the liposome composition (phospholipids or transfersomes), our results show a clear lack of cross-correlation below the skin surface, indicating that the penetration of intact liposomes is highly compromised by the skin barrier.


Journal of Lipid Research | 2012

The acyl-CoA binding protein is required for normal epidermal barrier function in mice.

Maria Bloksgaard; Signe Bek; Ann-Britt Marcher; Ditte Neess; Jonathan R. Brewer; Hans Kristian Hannibal-Bach; Torben Helledie; Christina Fenger; Marianne Due; Zane Berzina; R.H.H. Neubert; John Chemnitz; Bente Finsen; Anders Clemmensen; Johannes Wilbertz; Henrik Saxtorph; Jens Knudsen; Luis A. Bagatolli; Susanne Mandrup

The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP−/− mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling with age. Morphology and development of skin and appendages are normal in ACBP−/− mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP+/+ and ACBP−/− mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP−/− mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC-FFAs via complex phospholipids in the lamellar bodies. Importantly, we show that ACBP−/− mice display a ∼50% increased transepidermal water loss compared with ACBP+/+ mice. Furthermore, skin and fur sebum monoalkyl diacylglycerol (MADAG) levels are significantly increased, suggesting that ACBP limits MADAG synthesis in sebaceous glands. In summary, our study shows that ACBP is required for production of VLC-FFA for stratum corneum and for maintaining normal epidermal barrier function.


Cell Reports | 2013

Delayed Hepatic Adaptation to Weaning in ACBP−/− Mice Is Caused by Disruption of the Epidermal Barrier

Ditte Neess; Signe Bek; Maria Bloksgaard; Ann-Britt Marcher; Nils J. Færgeman; Susanne Mandrup

We previously reported that mice deficient in acyl-CoA-binding protein (ACBP) display a delayed metabolic adaptation to weaning. This includes a delayed activation of the hepatic lipogenic gene program, which may result from hepatic accumulation of triacylglycerol and/or cholesteryl esters in the late suckling period. To further investigate the basis for this phenotype, we generated mice deficient in ACBP in hepatocytes (Alb-ACBP(-/-)) and keratinocytes (K14-ACBP(-/-)). Surprisingly, the delayed adaptation to weaning, including hepatic lipid accumulation, is caused by ACBP deficiency in the skin rather than in the liver. Similarly to ACBP(-/-) mice, K14-ACBP(-/-) mice exhibit an increased transepidermal water loss, and we show that the hepatic phenotype is caused specifically by the epidermal barrier defect, which leads to increased lipolysis in white adipose tissue. Our data demonstrate that an imperfect epidermal barrier leads to profound suppression of the hepatic SREBP gene program and lipid accumulation in the liver.


Otology & Neurotology | 2012

Structural characterization and lipid composition of acquired cholesteatoma: a comparative study with normal skin

Maria Bloksgaard; Viggo Svane-Knudsen; Jens Ahm Sørensen; Luis A. Bagatolli; Jonathan R. Brewer

Hypothesis The goal of this work is to characterize the morphology and lipid composition of acquired cholesteatoma. We hypothesize that constitutive lipid membranes are present in the cholesteatoma and resemble those found in human skin stratum corneum. Methods We performed a comparative noninvasive structural and lipid compositional study of acquired cholesteatoma and control human skin using multiphoton excitation fluorescence microscopy–related techniques and high-performance thin-layer chromatography. Results The structural arrangement of the cholesteatoma is morphologically invariant along a depth of more than 200 &mgr;m and resembles the stratum corneum of hyperorthokeratotic skin. Lipid compositional analyses of the cholesteatoma show the presence of all major lipid classes found in normal skin stratum corneum (ceramides, long chain fatty acids, and cholesterol). Consistent with this, evaluation of Nile red and LAURDAN generalized polarization function images of the cholesteatoma show intercellular regions similar to normal skin stratum corneum in terms of lipid membrane packing and local water content. Conclusion The investigations show the presence of an extremely thickened stratum corneum within the cholesteatoma. The lipid composition and extracellular membranes similar to those of normal skin stratum corneum are present, indicating that a defensive/permeability barrier is present in the cholesteatoma. Finally, it is demonstrated that multiphoton excitation fluorescence microscopy is a suitable noninvasive tool for investigating the morphology and intrinsic physical properties of acquired cholesteatoma.


Journal of Vascular Research | 2015

Elastin Organization in Pig and Cardiovascular Disease Patients' Pericardial Resistance Arteries

Maria Bloksgaard; Thomas Leurgans; Inger Nissen; Pia Jensen; Maria Lyck Hansen; Jonathan R. Brewer; Luis A. Bagatolli; Niels Marcussen; Akhmadjon Irmukhamedov; Lars Melholt Rasmussen; Jo G. R. De Mey

Peripheral vascular resistance is increased in essential hypertension. This involves structural changes of resistance arteries and stiffening of the arterial wall, including remodeling of the extracellular matrix. We hypothesized that biopsies of the human parietal pericardium, obtained during coronary artery bypass grafting or cardiac valve replacement surgeries, can serve as a source of resistance arteries for structural research in cardiovascular disease patients. We applied two-photon excitation fluorescence microscopy to study the parietal pericardium and isolated pericardial resistance arteries with a focus on the collagen and elastin components of the extracellular matrix. Initial findings in pig tissue were confirmed in patient biopsies. The microarchitecture of the internal elastic lamina in both the pig and patient pericardial resistance arteries (studied at a transmural pressure of 100 mm Hg) is fiber like, and no prominent external elastic lamina could be observed. This microarchitecture is very different from that in rat mesenteric arteries frequently used for resistance artery research. In conclusion, we add three-dimensional information on the structure of the extracellular matrix in resistance arteries from cardiovascular disease patients and propose further use of patient pericardial resistance arteries for studies of the human microvasculature.


Oncotarget | 2016

Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1.

Bo Bai; Andy W.C. Man; Kangmin Yang; Yumeng Guo; Cheng Xu; Hung-Fat Tse; Weiping Han; Maria Bloksgaard; Jo G. R. De Mey; Paul M. Vanhoutte; Aimin Xu; Yu Wang

Aims-SIRT1 exerts potent activity against cellular senescence and vascular ageing. By decreasing LKB1 protein levels, it promotes the survival and regeneration of endothelial cells. The present study aims to investigate the molecular mechanisms underlying SIRT1-mediated LKB1 degradation for the prevention of vascular ageing. Methods and Results-Co-immunoprecipitation assay demonstrated that SIRT1, via its amino-terminus, binds to the DOC domain of HERC2 [HECT and RLD domain containing E3 ubiquitin protein ligase 2], which then ubiquitinates LKB1 in the nuclear compartment of endothelial cells. Site-directed mutagenesis revealed that acetylation at lysine (K) 64 of LKB1 triggers the formation of SIRT1/HERC2/LKB1 protein complex and subsequent proteasomal degradation. In vitro cellular studies suggested that accumulation of acetylated LKB1 in the nucleus leads to endothelial activation, in turn stimulating the proliferation of vascular smooth muscle cells and the production of extracellular matrix proteins. Chromatin immunoprecipitation quantitative PCR confirmed that acetylated LKB1 interacts with and activates TGFβ1 promoter, which is inhibited by SIRT1. Knocking down either SIRT1 or HERC2 results in an increased association of LKB1 with the positive regulatory elements of TGFβ1 promoter. In mice without endothelial nitric oxide synthase, selective overexpression of human SIRT1 in endothelium prevents hypertension and age-related adverse arterial remodeling. Lentiviral-mediated knockdown of HERC2 abolishes the beneficial effects of endothelial SIRT1 on both arterial remodeling and arterial blood pressure control. Conclusion-By downregulating acetylated LKB1 protein via HERC2, SIRT1 fine-tunes the crosstalk between endothelial and vascular smooth muscle cells to prevent adverse arterial remodeling and maintain vascular homeostasis.


Biochimica et Biophysica Acta | 2014

Acyl-CoA binding protein and epidermal barrier function.

Maria Bloksgaard; Ditte Neess; Nils J. Færgeman; Susanne Mandrup

The acyl-CoA binding protein (ACBP) is a 10kDa intracellular protein expressed in all eukaryotic species and mammalian tissues investigated. It binds acyl-CoA esters with high specificity and affinity and is thought to act as an intracellular transporter of acyl-CoA esters between different enzymatic systems; however, the precise function remains unknown. ACBP is expressed at relatively high levels in the epidermis, particularly in the suprabasal layers, which are highly active in lipid synthesis. Targeted disruption of the ACBP gene in mice leads to a pronounced skin and fur phenotype, which includes tousled and greasy fur, development of alopecia and scaling of the skin with age. Furthermore, epidermal barrier function is compromised causing a ~50% increase in transepidermal water loss relative to that of wild type mice. Lipidomic analyses indicate that this is due to significantly reduced levels of non-esterified very long chain fatty acids in the stratum corneum of ACBP(-/-) mice. Here we review the current knowledge of ACBP with special focus on the function of ACBP in the epidermal barrier. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.

Collaboration


Dive into the Maria Bloksgaard's collaboration.

Top Co-Authors

Avatar

Jo G. R. De Mey

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Jonathan R. Brewer

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis A. Bagatolli

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kristoffer Rosenstand

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Susanne Mandrup

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Ditte Neess

University of Southern Denmark

View shared research outputs
Top Co-Authors

Avatar

Inger Nissen

University of Southern Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge