Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Bondesson is active.

Publication


Featured researches published by Maria Bondesson.


Biochimica et Biophysica Acta | 2015

Estrogen receptor signaling during vertebrate development

Maria Bondesson; Ruixin Hao; Chin-Yo Lin; Cecilia Williams; Jan Åke Gustafsson

Estrogen receptors are expressed and their cognate ligands produced in all vertebrates, indicative of important and conserved functions. Through evolution estrogen has been involved in controlling reproduction, affecting both the development of reproductive organs and reproductive behavior. This review broadly describes the synthesis of estrogens and the expression patterns of aromatase and the estrogen receptors, in relation to estrogen functions in the developing fetus and child. We focus on the role of estrogens for the development of reproductive tissues, as well as non-reproductive effects on the developing brain. We collate data from human, rodent, bird and fish studies and highlight common and species-specific effects of estrogen signaling on fetal development. Morphological malformations originating from perturbed estrogen signaling in estrogen receptor and aromatase knockout mice are discussed, as well as the clinical manifestations of rare estrogen receptor alpha and aromatase gene mutations in humans. This article is part of a Special Issue entitled: Nuclear receptors in animal development.


Birth Defects Research Part C-embryo Today-reviews | 2011

Developmental toxicity screening in zebrafish.

Catherine W. McCollum; Nicole A. Ducharme; Maria Bondesson; Jan Åke Gustafsson

Given the ever-increasing toxic exposure ubiquitously present in our environment as well as emerging evidence that these exposures are hazardous to human health, the current rodent-based regulations are proving inadequate. In the process of overhauling risk assessment methodology, a nonrodent test organism, the zebrafish, is emerging as tractable for medium- and high-throughput assessments, which may help to accelerate the restructuring of standards. Zebrafish have high developmental similarity to mammals in most aspects of embryo development, including early embryonic processes, and on cardiovascular, somite, muscular, skeletal, and neuronal systems. Here, we briefly describe the development of these systems and then chronicle the toxic impacts assessed following chemical exposure. We also compare the available data in zebrafish toxicity assays with two databases containing mammalian toxicity data. Finally, we identify gaps in our collective knowledge that are ripe for future studies.


Breast Cancer Research | 2012

ERβ1 represses basal-like breast cancer epithelial to mesenchymal transition by destabilizing EGFR

Christoforos Thomas; Gayani Rajapaksa; Fotis Nikolos; Ruixin Hao; Anne Katchy; Catherine W. McCollum; Maria Bondesson; Phil Quinlan; Alastair M. Thompson; Savitri Krishnamurthy; Francisco J. Esteva; Jan Åke Gustafsson

IntroductionEpithelial to mesenchymal transition (EMT) is associated with the basal-like breast cancer phenotypes. Sixty percent of basal-like cancers have been shown to express wild-type estrogen receptor beta (ERβ1). However, it is still unclear whether the ERβ expression is related to EMT, invasion and metastasis in breast cancer. In the present study, we examined whether ERβ1 through regulating EMT can influence invasion and metastasis in basal-like cancers.MethodsBasal-like breast cancer cells (MDA-MB-231 and Hs578T), in which ERβ1 was either overexpressed or down-regulated were analyzed for their ability to migrate and invade (wound-healing assay, matrigel-coated Transwell assay) as well as for the expression of EMT markers and components of the EGFR pathway (immunoblotting, RT-PCR). Co-immunoprecipitation and ubiquitylation assays were employed to examine whether ERβ1 alters epidermal growth factor receptor (EGFR) protein degradation and the interaction between EGFR and the ubiquitin ligase c-Cbl. The metastatic potential of the ERβ1-expressing MDA-MB-231 cells was evaluated in vivo in a zebrafish xenotransplantation model and the correlation between ERβ1 and E-cadherin expression was examined in 208 clinical breast cancer specimens by immunohistochemistry.ResultsHere we show that ERβ1 inhibits EMT and invasion in basal-like breast cancer cells when they grow either in vitro or in vivo in zebrafish. The inhibition of EMT correlates with an ERβ1-mediated up-regulation of miR-200a/b/429 and the subsequent repression of ZEB1 and SIP1, which results in increased expression of E-cadherin. The positive correlation of ERβ1 and E-cadherin expression was additionally observed in breast tumor samples. Down-regulation of the basal marker EGFR through stabilization of the ubiquitin ligase c-Cbl complexes and subsequent ubiquitylation and degradation of the activated receptor is involved in the ERβ1-mediated repression of EMT and induction of EGFR signaling abolished the ability of ERβ1 to sustain the epithelial phenotype.ConclusionsTaken together, the results of our study strengthen the association of ERβ1 with the regulation of EMT and propose the receptor as a potential crucial marker in predicting metastasis in breast cancer.


PLOS ONE | 2013

Identification of Estrogen Target Genes during Zebrafish Embryonic Development through Transcriptomic Analysis

Ruixin Hao; Maria Bondesson; Amar V. Singh; Anne Riu; Catherine W. McCollum; Thomas B. Knudsen; Daniel A. Gorelick; Jan Åke Gustafsson

Estrogen signaling is important for vertebrate embryonic development. Here we have used zebrafish (Danio rerio) as a vertebrate model to analyze estrogen signaling during development. Zebrafish embryos were exposed to 1 µM 17β-estradiol (E2) or vehicle from 3 hours to 4 days post fertilization (dpf), harvested at 1, 2, 3 and 4 dpf, and subjected to RNA extraction for transcriptome analysis using microarrays. Differentially expressed genes by E2-treatment were analyzed with hierarchical clustering followed by biological process and tissue enrichment analysis. Markedly distinct sets of genes were up and down-regulated by E2 at the four different time points. Among these genes, only the well-known estrogenic marker vtg1 was co-regulated at all time points. Despite this, the biological functional categories targeted by E2 were relatively similar throughout zebrafish development. According to knowledge-based tissue enrichment, estrogen responsive genes were clustered mainly in the liver, pancreas and brain. This was in line with the developmental dynamics of estrogen-target tissues that were visualized using transgenic zebrafish containing estrogen responsive elements driving the expression of GFP (Tg(5xERE:GFP)). Finally, the identified embryonic estrogen-responsive genes were compared to already published estrogen-responsive genes identified in male adult zebrafish (Gene Expression Omnibus database). The expressions of a few genes were co-regulated by E2 in both embryonic and adult zebrafish. These could potentially be used as estrogenic biomarkers for exposure to estrogens or estrogenic endocrine disruptors in zebrafish. In conclusion, our data suggests that estrogen effects on early embryonic zebrafish development are stage- and tissue- specific.


ALTEX-Alternatives to Animal Experimentation | 2016

Advancing toxicology research using in vivo high throughput toxicology with small fish models.

Antonio Planchart; Carolyn J. Mattingly; David Allen; Patricia Ceger; Warren Casey; David E. Hinton; Jyotshna Kanungo; Seth W. Kullman; Tamara Tal; Maria Bondesson; Shawn M. Burgess; Con Sullivan; Carol H. Kim; Mamta Behl; Stephanie Padilla; David M. Reif; Robert L. Tanguay; Jon Hamm

Summary Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity. Workshop participants agreed that the lack of standardized protocols is an impediment to broader acceptance of these models, whereas development of standardized protocols, validation, and subsequent regulatory acceptance would facilitate greater usage. Given the advantages and increasing application of small fish models, there was widespread interest in follow-up workshops to review and discuss developments in their use. In this article, we summarize the recommendations formulated by workshop participants to enhance the utility of small fish species in toxicology studies, as well as many of the advances in the field of toxicology that resulted from using small fish species, including advances in developmental toxicology, cardiovascular toxicology, neurotoxicology, and immunotoxicology. We also review many emerging issues that will benefit from using small fish species, especially zebrafish, and new technologies that will enable using these organisms to yield results unprecedented in their information content to better understand how toxicants affect development and health.


Reproductive Toxicology | 2015

Comparison of toxicity values across zebrafish early life stages and mammalian studies: Implications for chemical testing

Nicole A. Ducharme; David M. Reif; Jan Åke Gustafsson; Maria Bondesson

With the high cost and slow pace of toxicity testing in mammals, the vertebrate zebrafish has become a tractable model organism for high throughput toxicity testing. We present here a meta-analysis of 600 chemicals tested for toxicity in zebrafish embryos and larvae. Nineteen aggregated and 57 individual toxicity endpoints were recorded from published studies yielding 2695 unique data points. These data points were compared to lethality and reproductive toxicology endpoints analyzed in rodents and rabbits and to exposure values for humans. We show that although many zebrafish endpoints did not correlate to rodent or rabbit acute toxicity data, zebrafish could be used to accurately predict relative acute toxicity through the rat inhalation, rabbit dermal, and rat oral exposure routes. Ranking of the chemicals based on toxicity and teratogenicity in zebrafish, as well as human exposure levels, revealed that 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene, and chlorpyrifos ranked in the top nine of all chemicals for these three categories, and as such should be considered high priority chemicals for testing in higher vertebrates.


Reproductive Toxicology | 2013

Meta-analysis of toxicity and teratogenicity of 133 chemicals from zebrafish developmental toxicity studies

Nicole A. Ducharme; Leif E. Peterson; Emilio Benfenati; David M. Reif; Catherine W. McCollum; Jan Åke Gustafsson; Maria Bondesson

Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the literature to ascertain predictive developmental toxicity endpoints. We found that the physical properties of chemicals (BCF or logP) did not fully predict lethality or developmental outcomes. Instead, individual outcomes such as pericardial edema and yolk sac edema were more reliable indicators of developmental toxicity. In addition, we ranked the chemicals based on toxicity with the Toxicological Priority Index (ToxPi) program and via a teratogenic ratio, and found that perfluorooctane sulfonate (PFOS) had the highest ToxPi score, triphenyltin acetate had the highest average ToxPi score (corrected for missing data and having more than 4 outcomes), and N-methyl-dithiocarbamate had the highest teratogenic ratio.


PLOS ONE | 2012

Genome-wide search reveals the existence of a limited number of thyroid hormone receptor alpha target genes in cerebellar neurons.

Fabrice Chatonnet; Romain Guyot; Frédéric Picou; Maria Bondesson; Frédéric Flamant

Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development.


The EMBO Journal | 1992

The carboxy-terminal exon of the adenovirus E1A protein is required for E4F-dependent transcription activation.

Maria Bondesson; Catharina Svensson; Stig Linder; Göran Akusjärvi

The adenovirus‐2 E1A 289R transcription activator protein contains a 49 amino acid sequence (designated CR3) that has been suggested to represent the minimal domain required for E1A‐induced activation of viral early transcription. We show here that the non‐conserved carboxy‐terminal E1A exon contains two interchangeable elements that are required for efficient CR3‐dependent transactivation of the adenovirus E4 promoter in HeLa cells. These two elements do not encode independent transactivation functions and have been designated auxiliary regions (ARs) 1 and 2. The effects of AR1 and AR2 are not additive, suggesting that they contribute a mechanistically analogous function in transcription. Previous studies have suggested that two cellular transcription factors, ATF‐2 and E4F, can function together with E1A to induce transcription of the E4 promoter. The importance of respective factors for E4 transcription has not been resolved. We find that E1A activation of E4F, but not ATF‐2 (or other ATF factors), is AR1‐ and AR2‐dependent. This result suggests that E1A induction of the E4 promoter in HeLa cells is primarily mediated by E4F.


Reproductive Toxicology | 2014

Immediate and long-term consequences of vascular toxicity during zebrafish development

Tamara Tal; Catherine W. McCollum; P.S. Harris; J. Olin; Nicole C. Kleinstreuer; C.E. Wood; Charu Hans; Shishir K. Shah; Fatima A. Merchant; Maria Bondesson; Thomas B. Knudsen; Stephanie Padilla; M.J. Hemmer

Proper formation of the vascular system is necessary for embryogenesis, and chemical disruption of vascular development may be a key event driving developmental toxicity. In order to test the effect of environmental chemicals on this critical process, we evaluated a quantitative assay in transgenic zebrafish using angiogenesis inhibitors that target VEGFR2 (PTK787) or EGFR (AG1478). Both PTK787 and AG1478 exposure impaired intersegmental vessel (ISV) sprouting, while AG1478 also produced caudal and pectoral fin defects at concentrations below those necessary to blunt ISV morphogenesis. The functional consequences of vessel toxicity during early development included decreased body length and survival in juvenile cohorts developmentally exposed to inhibitor concentrations sufficient to completely block ISV sprouting angiogenesis. These data show that concentration-dependent disruption of the presumed targets for these inhibitors produce adverse outcomes at advanced life stages.

Collaboration


Dive into the Maria Bondesson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Riu

University of Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge