Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria C. Fioretti is active.

Publication


Featured researches published by Maria C. Fioretti.


Nature Immunology | 2003

Modulation of tryptophan catabolism by regulatory T cells

Francesca Fallarino; Ursula Grohmann; Kwang Woo Hwang; Ciriana Orabona; Carmine Vacca; Roberta Bianchi; Maria Laura Belladonna; Maria C. Fioretti; Maria-Luisa Alegre; Paolo Puccetti

Regulatory T (TR) cells manifest constitutive expression of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4), but the function of CTLA-4 in mediating the regulatory function of TR cells is unclear. We show here that mouse CD4+CD25+ cells, either resting or induced to overexpress CTLA-4 by treatment with antibody to CD3, initiated tryptophan catabolism in dendritic cells through a CTLA-4-dependent mechanism. This process required B7 expression and cytokine production by the dendritic cells. In contrast, TR cells cultured in the presence of bacterial lipopolysaccharide induced tryptophan catabolism by dendritic cells in a CTLA-4-independent but cytokine-dependent way. Thus, regulation of immunosuppressive tryptophan catabolism in dendritic cells might represent a major mechanism of action of TR cells.


Nature Immunology | 2002

CTLA-4-Ig regulates tryptophan catabolism in vivo.

Ursula Grohmann; Ciriana Orabona; Francesca Fallarino; Carmine Vacca; Filippo Calcinaro; Alberto Falorni; Paola Candeloro; Maria Laura Belladonna; Roberta Bianchi; Maria C. Fioretti; Paolo Puccetti

Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) plays a critical role in peripheral tolerance. However, regulatory pathways initiated by the interactions of CTLA-4 with B7 counterligands expressed on antigen-presenting cells are not completely understood. We show here that long-term survival of pancreatic islet allografts induced by the soluble fusion protein CTLA-4–immunoglobulin (CTLA-4–Ig) is contingent upon effective tryptophan catabolism in the host. In vitro, we show that CTLA-4–Ig regulates cytokine-dependent tryptophan catabolism in B7-expressing dendritic cells. These data suggest that modulation of tryptophan catabolism is a means by which CTLA-4 functions in vivo and that CTLA-4 acts as a ligand for B7 receptor molecules that transduce intracellular signals.


Journal of Immunology | 2006

The Combined Effects of Tryptophan Starvation and Tryptophan Catabolites Down-Regulate T Cell Receptor ζ-Chain and Induce a Regulatory Phenotype in Naive T Cells

Francesca Fallarino; Ursula Grohmann; Sylvaine You; Barbara C. McGrath; Douglas R. Cavener; Carmine Vacca; Ciriana Orabona; Roberta Bianchi; Maria Laura Belladonna; Claudia Volpi; Pere Santamaria; Maria C. Fioretti; Paolo Puccetti

Tryptophan catabolism is a tolerogenic effector system in regulatory T cell function, yet the general mechanisms whereby tryptophan catabolism affects T cell responses remain unclear. We provide evidence that the short-term, combined effects of tryptophan deprivation and tryptophan catabolites result in GCN2 kinase-dependent down-regulation of the TCR ζ-chain in murine CD8+ T cells. TCR ζ down-regulation can be demonstrated in vivo and is associated with an impaired cytotoxic effector function in vitro. The longer-term effects of tryptophan catabolism include the emergence of a regulatory phenotype in naive CD4+CD25− T cells via TGF-β induction of the forkhead transcription factor Foxp3. Such converted cells appear to be CD25+, CD69−, CD45RBlow, CD62L+, CTLA-4+, BTLAlow and GITR+, and are capable of effective control of diabetogenic T cells when transferred in vivo. Thus, both tryptophan starvation and tryptophan catabolites contribute to establishing a regulatory environment affecting CD8+ as well as CD4+ T cell function, and not only is tryptophan catabolism an effector mechanism of tolerance, but it also results in GCN2-dependent generation of autoimmune-preventive regulatory T cells.


Cell Death & Differentiation | 2002

T cell apoptosis by tryptophan catabolism

Francesca Fallarino; Ursula Grohmann; Carmine Vacca; Roberta Bianchi; Ciriana Orabona; Antonio Spreca; Maria C. Fioretti; Paolo Puccetti

Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that, expressed by different cell types, has regulatory effects on T cells resulting from tryptophan depletion in specific local tissue microenvironments. Different mechanisms, however, might contribute to IDO-dependent immune regulation. We show here that tryptophan metabolites in the kynurenine pathway, such as 3-hydroxyanthranilic and quinolinic acids, will induce the selective apoptosis in vitro of murine thymocytes and of Th1 but not Th2 cells. T cell apoptosis was observed at relatively low concentrations of kynurenines, did not require Fas/Fas ligand interactions, and was associated with the activation of caspase-8 and the release of cytochrome c from mitochondria. When administered in vivo, the two kynurenines caused depletion of specific thymocyte subsets in a fashion qualitatively similar to dexamethasone. These data suggest that the selective deletion of T lymphocytes may be a major mechanism whereby tryptophan metabolism affects immunity under physiopathologic conditions.


Nature | 2008

Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease.

Luigina Romani; Francesca Fallarino; Antonella De Luca; Claudia Montagnoli; Carmen D’Angelo; Teresa Zelante; Carmine Vacca; Francesco Bistoni; Maria C. Fioretti; Ursula Grohmann; Brahm H. Segal; Paolo Puccetti

Half a century ago, chronic granulomatous disease (CGD) was first described as a disease fatally affecting the ability of children to survive infections. Various milestone discoveries have since been made, from an insufficient ability of patients’ leucocytes to kill microbes to the underlying genetic abnormalities. In this inherited disorder, phagocytes lack NADPH oxidase activity and do not generate reactive oxygen species, most notably superoxide anion, causing recurrent bacterial and fungal infections. Patients with CGD also suffer from chronic inflammatory conditions, most prominently granuloma formation in hollow viscera. The precise mechanisms of the increased microbial pathogenicity have been unclear, and more so the reasons for the exaggerated inflammatory response. Here we show that a superoxide-dependent step in tryptophan metabolism along the kynurenine pathway is blocked in CGD mice with lethal pulmonary aspergillosis, leading to unrestrained Vγ1+ γδ T-cell reactivity, dominant production of interleukin (IL)-17, defective regulatory T-cell activity and acute inflammatory lung injury. Although beneficial effects are induced by IL-17 neutralization or γδ T-cell contraction, complete cure and reversal of the hyperinflammatory phenotype are achieved by replacement therapy with a natural kynurenine distal to the blockade in the pathway. Effective therapy, which includes co-administration of recombinant interferon-γ (IFN-γ), restores production of downstream immunoactive metabolites and enables the emergence of regulatory Vγ4+ γδ and Foxp3+ αβ T cells. Therefore, paradoxically, the lack of reactive oxygen species contributes to the hyperinflammatory phenotype associated with NADPH oxidase deficiencies, through a dysfunctional kynurenine pathway of tryptophan catabolism. Yet, this condition can be reverted by reactivating the pathway downstream of the superoxide-dependent step.


Nature Immunology | 2011

Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells

Maria Teresa Pallotta; Ciriana Orabona; Claudia Volpi; Carmine Vacca; Maria Laura Belladonna; Roberta Bianchi; Giuseppe Servillo; Cinzia Brunacci; Mario Calvitti; Silvio Bicciato; Emilia Maria Cristina Mazza; Louis Boon; Fabio Grassi; Maria C. Fioretti; Francesca Fallarino; Paolo Puccetti; Ursula Grohmann

Regulation of tryptophan metabolism by indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) is a highly versatile modulator of immunity. In inflammation, interferon-γ is the main inducer of IDO for the prevention of hyperinflammatory responses, yet IDO is also responsible for self-tolerance effects in the longer term. Here we show that treatment of mouse plasmacytoid DCs (pDCs) with transforming growth factor-β (TGF-β) conferred regulatory effects on IDO that were mechanistically separable from its enzymic activity. We found that IDO was involved in intracellular signaling events responsible for the self-amplification and maintenance of a stably regulatory phenotype in pDCs. Thus, IDO has a tonic, nonenzymic function that contributes to TGF-β-driven tolerance in noninflammatory contexts.


Nature Medicine | 2007

Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy

Ursula Grohmann; Claudia Volpi; Francesca Fallarino; Silvia Bozza; Roberta Bianchi; Carmine Vacca; Ciriana Orabona; Maria Laura Belladonna; Emira Ayroldi; Giuseppe Nocentini; Louis Boon; Francesco Bistoni; Maria C. Fioretti; Luigina Romani; Carlo Riccardi; Paolo Puccetti

Glucocorticoid-induced tumor necrosis factor receptor (GITR) on T cells and its natural ligand, GITRL, on accessory cells contribute to the control of immune homeostasis. Here we show that reverse signaling through GITRL after engagement by soluble GITR initiates the immunoregulatory pathway of tryptophan catabolism in mouse plasmacytoid dendritic cells, by means of noncanonical NF-κB–dependent induction of indoleamine 2,3-dioxygenase (IDO). The synthetic glucocorticoid dexamethasone administered in vivo activated IDO through the symmetric induction of GITR in CD4+ T cells and GITRL in plasmacytoid dendritic cells. The drug exerted IDO-dependent protection in a model of allergic airway inflammation. Modulation of tryptophan catabolism via the GITR-GITRL coreceptor system might represent an effective therapeutic target in immune regulation. Induction of IDO could be an important mechanism underlying the anti-inflammatory action of corticosteroids.


Nature Immunology | 2004

CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86.

Ciriana Orabona; Ursula Grohmann; Maria Laura Belladonna; Francesca Fallarino; Carmine Vacca; Roberta Bianchi; Silvia Bozza; Claudia Volpi; Benoı̂t Salomon; Maria C. Fioretti; Luigina Romani; Paolo Puccetti

Bidirectional signaling along the B7–CTLA-4 coreceptor pathway enables reciprocal conditioning of T cells and dendritic cells. Although T cells can instruct dendritic cells to manifest tolerogenic properties after CTLA-4 engagement of B7, such a B7-mediated signaling is not known to occur in response to CD28. Here we show that mouse dendritic cells were induced by soluble CD28 to express interleukin 6 and interferon-γ. Production of interleukin 6 required B7-1 (CD80), B7-2 (CD86) and p38 mitogen-activated protein kinase and prevented interferon-γ-driven expression of immunosuppressive tryptophan catabolism. In vivo, an adjuvant activity of soluble CD28 was demonstrated as enhanced T cell-mediated immunity to tumor and self peptides and protection against microbial and tumor challenge. Thus, different ligands of B7 can signal dendritic cells to express functionally distinct effector responses.


Immunity | 1998

IL-12 Acts Directly on DC to Promote Nuclear Localization of NF-κB and Primes DC for IL-12 Production

Ursula Grohmann; Maria Laura Belladonna; Roberta Bianchi; Ciriana Orabona; Emira Ayroldi; Maria C. Fioretti; Paolo Puccetti

We analyzed the expression of an IL-12 receptor by fresh dendritic cells (DC) and a DC line. Using RT-PCR, RNAse protection, and electrophoretic mobility shift assay analysis, we found that DC possess an IL-12 receptor with beta1 subunit (downstream box 1)-related differences from that on T cells. IL-12 signaling through this receptor involved members of the NF-KB but not STAT family. The unique properties of the IL-12 receptor on DC, characterized by a single class of binding sites with a Kd of about 325 pM, may underlie rather unique effects, such as IFNgamma-independent augmentation of class II antigen expression and priming for LPS-induced production of IL-12.


Journal of Immunology | 2002

IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells.

Maria Laura Belladonna; Jean-Christophe Renauld; Roberta Bianchi; Carmine Vacca; Francesca Fallarino; Ciriana Orabona; Maria C. Fioretti; Ursula Grohmann; Paolo Puccetti

IL-23 is a recently discovered heterodimeric cytokine that shares biological properties with proinflammatory cytokines. The biologically active heterodimer consists of p19 and the p40 subunit of IL-12. IL-23 has been shown to possess biological activities on T cells that are similar as well distinct from those of IL-12. We have constructed single-chain IL-23 and IL-12 fusion proteins (IL-23-Ig and IL-12-Ig) and have compared the two recombinant proteins for effects on murine dendritic cells (DC). Here we show that the IL-23-Ig can bind a significant proportion of splenic DC of both the CD8α− and CD8α+ subtypes. Furthermore, IL-23and IL-12-Ig exert biological activities on DC that are only in part overlapping. While both proteins induce IL-12 production from DC, only IL-23-Ig can act directly on CD8α+ DC to promote immunogenic presentation of an otherwise tolerogenic tumor peptide. In addition, the in vitro effects of IL-23-Ig did not appear to require IL-12Rβ2 or to be mediated by the production of IL-12. These data may establish IL-23 as a novel cytokine with major effects on APC.

Collaboration


Dive into the Maria C. Fioretti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge