Maria Carmela Lombardo
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Carmela Lombardo.
Siam Journal on Mathematical Analysis | 2003
Maria Carmela Lombardo; Marco Cannone; Marco Sammartino
We consider the mild solutions of the Prandtl equations on the half space. Requiring analyticity only with respect to the tangential variable, we prove the short time existence and the uniqueness of the solution in the proper function space. Theproof is achieved applying the abstract Cauchy--Kowalewski theorem to the boundary layer equations once the convection-diffusion operator is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math. Phys., 192 (1998), pp. 433--461], as we do not require analyticity of the data with respect to the normal variable.
Nonlinear Analysis-real World Applications | 2013
G. Gambino; Maria Carmela Lombardo; Marco Sammartino
Abstract In this work we investigate the process of pattern formation in a two dimensional domain for a reaction–diffusion system with nonlinear diffusion terms and the competitive Lotka–Volterra kinetics. The linear stability analysis shows that cross-diffusion, through Turing bifurcation, is the key mechanism for the formation of spatial patterns. We show that the bifurcation can be regular, degenerate non-resonant and resonant. We use multiple scales expansions to derive the amplitude equations appropriate for each case and show that the system supports patterns like rolls, squares, mixed-mode patterns, supersquares, and hexagonal patterns.
Mathematics and Computers in Simulation | 2012
G. Gambino; Maria Carmela Lombardo; Marco Sammartino
In this work we investigate the phenomena of pattern formation and wave propagation for a reaction-diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart-Landau equation respectively. When the size of the spatial domain is large, and the initial perturbation is localized, the pattern is formed sequentially and invades the whole domain as a traveling wavefront. In this case the amplitude of the pattern is modulated in space and the corresponding evolution is governed by the Ginzburg-Landau equation.
Physical Review E | 2013
G. Gambino; Maria Carmela Lombardo; Marco Sammartino; Vincenzo Sciacca
In this work we investigate the effect of density-dependent nonlinear diffusion on pattern formation in the Brusselator system. Through linear stability analysis of the basic solution we determine the Turing and the oscillatory instability boundaries. A comparison with the classical linear diffusion shows how nonlinear diffusion favors the occurrence of Turing pattern formation. We study the process of pattern formation both in one-dimensional and two-dimensional spatial domains. Through a weakly nonlinear multiple scales analysis we derive the equations for the amplitude of the stationary patterns. The analysis of the amplitude equations shows the occurrence of a number of different phenomena, including stable supercritical and subcritical Turing patterns with multiple branches of stable solutions leading to hysteresis. Moreover, we consider traveling patterning waves: When the domain size is large, the pattern forms sequentially and traveling wave fronts are the precursors to patterning. We derive the Ginzburg-Landau equation and describe the traveling front enveloping a pattern which invades the domain. We show the emergence of radially symmetric target patterns, and, through a matching procedure, we construct the outer amplitude equation and the inner core solution.
Atmospheric Environment | 2001
Maria Carmela Lombardo; Rita M. Melati; Santino Orecchio
The influence of air pollution on the chemical composition of Pinus sp. needles was examined in polluted and control sites in and around the city of Palermo (Sicily). The chemical composition of needles indicated the extent of contamination of the trees, which were cytologically examined. Cell analysis was carried out on pine samples, including needles and pollens, from 15 different locations. Biostructural and spectrophotometric tests were performed. In particular, concentrations of toxic (Cd, Pb) and non-toxic metals (Fe,Cu, Zn) were determined, as well as injury caused by their accumulation in the needles. The more highly urbanised areas showed higher concentrations of metals (Pb, Cu. Zn, Fe); only the concentrations of Cd and Mn turned out to be constant in all the sites. Cell analysis revealed displasic cells and secondary metabolite accumulations in trees from polluted sites. These changes observed were most likely caused by the toxic effect of pollutants.
Nonlinearity | 2013
Marco Cannone; Maria Carmela Lombardo; Marco Sammartino
In this paper we shall be concerned with Prandtls equations with incompatible data, i.e. with initial data that, in general, do not fulfil the boundary conditions imposed on the solution. Under the hypothesis of analyticity in the streamwise variable, we shall prove that Prandtls equations, on the half-plane or on the half-space, are well posed for a short time.
Acta Applicandae Mathematicae | 2014
G. Gambino; Maria Carmela Lombardo; Marco Sammartino
In this work we study the effect of density dependent nonlinear diffusion on pattern formation in the Lengyel–Epstein system. Via the linear stability analysis we determine both the Turing and the Hopf instability boundaries and we show how nonlinear diffusion intensifies the tendency to pattern formation; in particular, unlike the case of classical linear diffusion, the Turing instability can occur even when diffusion of the inhibitor is significantly slower than activator’s one. In the Turing pattern region we perform the WNL multiple scales analysis to derive the equations for the amplitude of the stationary pattern, both in the supercritical and in the subcritical case. Moreover, we compute the complex Ginzburg–Landau equation in the vicinity of the Hopf bifurcation point as it gives a slow spatio-temporal modulation of the phase and amplitude of the homogeneous oscillatory solution.
Comptes Rendus De L Academie Des Sciences Serie I-mathematique | 2001
Marco Cannone; Maria Carmela Lombardo; Marco Sammartino
Abstract Under the hypothesis of analyticity of the data with respect to the tangential variable we prove the existence and uniqueness of the mild solution of Prandtl boundary layer equation. This can be considered an improvement of the results of [8] as we do not require analyticity with respect to the normal variable.
Siam Journal on Mathematical Analysis | 2001
Maria Carmela Lombardo; Marco Sammartino
Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer.
Journal of Mathematical Biology | 2017
Maria Carmela Lombardo; R. Barresi; Eleonora Bilotta; Francesco Gargano; Pietro Pantano; Marco Sammartino
In this paper we derive a reaction-diffusion-chemotaxis model for the dynamics of multiple sclerosis. We focus on the early inflammatory phase of the disease characterized by activated local microglia, with the recruitment of a systemically activated immune response, and by oligodendrocyte apoptosis. The model consists of three equations describing the evolution of macrophages, cytokine and apoptotic oligodendrocytes. The main driving mechanism is the chemotactic motion of macrophages in response to a chemical gradient provided by the cytokines. Our model generalizes the system proposed by Calvez and Khonsari (Math Comput Model 47(7–8):726–742, 2008) and Khonsari and Calvez (PLos ONE 2(1):e150, 2007) to describe Baló’s sclerosis, a rare and aggressive form of multiple sclerosis. We use a combination of analytical and numerical approaches to show the formation of different demyelinating patterns. In particular, a Turing instability analysis demonstrates the existence of a threshold value for the chemotactic coefficient above which stationary structures develop. In the case of subcritical transition to the patterned state, the numerical investigations performed on a 1-dimensional domain show the existence, far from the bifurcation, of complex spatio-temporal dynamics coexisting with the Turing pattern. On a 2-dimensional domain the proposed model supports the emergence of different demyelination patterns: localized areas of apoptotic oligodendrocytes, which closely fit existing MRI findings on the active MS lesion during acute relapses; concentric rings, typical of Baló’s sclerosis; small clusters of activated microglia in absence of oligodendrocytes apoptosis, observed in the pathology of preactive lesions.