Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Carmen Veiga is active.

Publication


Featured researches published by María Carmen Veiga.


Bioresource Technology | 1997

Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter

I. Ruiz; María Carmen Veiga; P. de Santiago; R. Blázquez

A study was performed to assess the feasibility of anaerobic treatment of slaughterhouse wastewaters in a UASB (Upflow Anaerobic Sludge Blanket) reactor and in an AF (Anaerobic Filter). Among the different streams generated, the slaughter line showed the highest organic content with an average COD of 8000 mg/l, of which 70% was proteins. The suspended solids content represented between 15 and 30% of the COD. Both reactors had a working volume of 21. They were operated at 37°C. The UASB reactor was run at OLR (Organic Loading Rates) of 1–6.5 kg COD/m3/day. The COD removal was 90% for OLR up to 5 kg COD/m3/day and 60% for an OLR of 6.5 kg COD/m3/day. For similar organic loading rates, the AF showed lower removal efficiencies and lower percentages of methanization. At higher OLR sludge, flotation occurred and consequently the active biomass was washed out from the filter. The results indicated that anaerobic treatment systems are applicable to slaughterhouse wastewaters and that the UASB reactor shows a better performance, giving higher COD removal efficiencies than the AF.


Bioresource Technology | 2001

Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals

L. Amor; Christian Kennes; María Carmen Veiga

The toxicity and inhibitory effects of heavy metals such as cadmium, nickel and zinc on alkylbenzene removal were evaluated with a Bacillus strain. The kinetics of alkylbenzene biodegradation with the different heavy metals at various concentrations were modeled using the Andrews equation which yielded a good fit between model and experimental data. Additional experiments undertaken with a Pseudomonas sp. in presence of nickel confirmed a good fit between experimental data and the Andrews model for this strain as well. The heavy metals inhibition constants (Ki) were calculated for different combinations of volatile organic compounds (VOC) and heavy metals. The present approach provides a method for evaluating and quantifying the inhibition effect of heavy metals on the biodegradtion of pollutants by specific microbial strains.


Reviews in Environmental Science and Bio\/technology | 2002

Inert filter media for the biofiltration of waste gases - characteristics and biomass control

Christian Kennes; María Carmen Veiga

Soil biofilters and related systems based onthe use of natural filter beds have been usedfor several years for solving specific airpollution problems. Over the past decade,significant improvements have been brought tothese original bioprocesses, among which thedevelopment and use of new inert packingmaterials. The present paper overviews the mostcommon inert packings used in biofiltration ofwaste gases and their major characteristics. Apotential problem recently encountered whenusing inert filter beds is the heterogenousdistribution of biomass on the packingmaterial, and the excessive growth andaccumulation of biomass when treating highorganic loads, eventually leading to cloggingof the biofilter and reduced efficiency.Several strategies that have been proposed forsolving such problems are described in thispaper. Technologies for controlling excessbiomass accumulation can be grouped into fourcategories based on the use of mechanicalforces, the use of specific chemicals, thereduction of microbial growth, and predation.


Water Research | 2009

Removal of dichloromethane from waste gases in one- and two-liquid-phase stirred tank bioreactors and biotrickling filters

Laura Bailón; Marcell Nikolausz; Matthias Kästner; María Carmen Veiga; Christian Kennes

The removal of dichloromethane (DCM) from polluted air was studied both in biotrickling filters and in continuous stirred tank bioreactors, using either a single-liquid aqueous phase or a combination of an aqueous-organic liquid phase. The presence of the organic phase, i.e. silicone oil, at a volume ratio of 10% of the liquid phase, increased the maximum EC by about 25% in the BTF, reaching 200 gm(3)/h, and by as much as 300% in the CSTB, reaching 350 gm(3)/h. Based on data of chloride release in the aqueous phase and carbon dioxide production in the gas phase, complete dechlorination and mineralization of the pollutant could be confirmed. When applying shock loads, a more stable behaviour was observed in the presence of the organic phase. Generally, the completely mixed reactors were also more stable than the plug-flow biotrickling filters, irrespective of the presence of the organic phase. The use of molecular techniques allowed showing that the originally inoculated DCM-degrading Hyphomicrobium strains remained present, although not dominant, after long-term bioreactor operation. Different new bacterial populations did also appear in the systems, some of which were unable to degrade DCM.


Applied Microbiology and Biotechnology | 2005

Biofiltration of waste gases with the fungi Exophiala oligosperma and Paecilomyces variotii

Elena Estévez; María Carmen Veiga; Christian Kennes

Two biofilters fed toluene-polluted air were inoculated with new fungal isolates of either Exophiala oligosperma or Paecilomyces variotii, while a third bioreactor was inoculated with a defined consortium composed of both fungi and a co-culture of a Pseudomonas strain and a Bacillus strain. Elimination capacities of 77 g m−3 h−1 and 55 g m−3 h−1 were reached in the fungal biofilters (with removal efficiencies exceeding 99%) in the case of, respectively, E. oligosperma and Paecilomyces variotii when feeding air with a relative humidity (RH) of 85%. The inoculated fungal strains remained the single dominant populations throughout the experiment. Conversely, in the biofilter inoculated with the bacterial–fungal consortium, the bacteria were gradually overgrown by the fungi, reaching a maximum elimination capacity around 77 g m−3 h−1. Determination of carbon dioxide concentrations both in batch assays and in biofiltration studies suggested the near complete mineralization of toluene. The non-linear toluene removal along the height of the biofilters resulted in local elimination capacities of up to 170 g m−3 h−1 and 94 g m−3 h−1 in the reactors inoculated, respectively, with E. oligosperma and P. variotii. Further studies with the most efficient strain, E. oligosperma, showed that the performance was highly dependent on the RH of the air and the pH of the nutrient solution. At a constant 85% RH, the maximum elimination capacity either dropped to 48.7 g m−3 h−1 or increased to 95.6 g m−3 h−1, respectively, when modifying the pH of the nutrient solution from 5.9 to either 4.5 or 7.5. The optimal conditions were 100% RH and pH 7.5, which allowed a maximum elimination capacity of 164.4 g m−3 h−1 under steady-state conditions, with near-complete toluene degradation.


Journal of Industrial Microbiology & Biotechnology | 2005

Biodegradation of toluene by the new fungal isolates Paecilomyces variotii and Exophiala oligosperma

Elena Estévez; María Carmen Veiga; Christian Kennes

Two new fungal strains, namely Paecilomyces variotii and Exophiala oligosperma, were isolated on toluene as the sole carbon and energy source, mineralizing the substrate into carbon dioxide. Fungal strains isolated so far on such a pollutant and completely degrading it are very scarce. Both fungi degraded the pollutant over the pH range 3.9–6.9 and temperature range 23–40°C, but E. oligosperma was barely active at the highest temperature of 40°C. Fungal growth on alkylbenzenes at 40°C has not been reported before. Since the activity of the strains gradually decreased at pH values below 4.0, the use of nitrate instead of ammonium was tested. In the presence of toluene, nitrate was a suitable nitrogen source for the Exophiala strain, but not for the Paecilomyces strain. Nitrate rather than ammonium allowed the maintenance of a more constant pH.


Water Research | 1990

A new device for measurement and control of gas production by bench scale anaerobic digesters

María Carmen Veiga; M. Soto; R. Méndez; J.M. Lema

Abstract On the basis of an analysis, in terms of desirable characteristics and main sources of error, of existing apparatus for measuring biogas production by laboratory anaerobic digesters, we have developed a new device that is precise, inexpensive, easily constructed and capable of functioning autonomously for long periods. A slightly costlier version suitable for use in automatic control systems is also described.


Bioresource Technology | 2012

Biological conversion of carbon monoxide to ethanol: Effect of pH, gas pressure, reducing agent and yeast extract

Haris Nalakath Abubackar; María Carmen Veiga; Christian Kennes

A two-level full factorial design was carried out in order to investigate the effect of four factors on the bioconversion of carbon monoxide to ethanol and acetic acid by Clostridium autoethanogenum: initial pH (4.75-5.75), initial total pressure (0.8-1.6 bar), cysteine-HCl·H(2)O concentration (0.5-1.2 g/L) and yeast extract concentration (0.6-1.6 g/L). The maximum ethanol production was enhanced up to 200% when lowering the pH and amount yeast extract from 5.75 to 4.75 g/L and 1.6 to 0.6 g/L, respectively. The regression coefficient, regression model and analysis of variance (ANOVA) were obtained using MINITAB 16 software for ethanol, acetic acid and biomass. For ethanol, it was observed that all the main effects and the interaction effects were found statistically significant (p<0.05). The comparison between the experimental and the predicted values was found to be very satisfactory, indicating the suitability of the predicted model.


Biodegradation | 1999

Biofilter performance and characterization of a biocatalyst degrading alkylbenzene gases

María Carmen Veiga; M. Fraga; L. Amor; Christian Kennes

A biofilter treating alkylbenzene vapors was characterized for its optimal running conditions and kinetic parame-ters. Kinetics of the continuous biofilter were compared to batch kinetic data obtained with biofilm samples as well as with defined microbial consortia and with pure culture isolates from the biofilter. Both bacteria and fungi were present in the bioreactor. Five strains were isolated. Two bacteria, Bacillus and Pseudomonas, were shown to be dominant, as well as a Trichosporon strain which could, however, hardly grow on alkylbenzenes in pure culture. The remaining two strains were most often overgrown by the other three organisms in liquid phase batch cultures μmax, KS, KI values and biodegradation rates were calculated and compared for the difterent mixed and pure cultures. Since filter bed acidification was observed during biofiltration studies reaching a pH of about 4, experiments were also undertaken to study the influence of pH on performance of the different cultures. Biodegradation and growth were possible in all cases, over the pH range 3.5–7.0 at appreciable rates, both with mixed cultures and with pure bacterial cultures. Under certain conditions, microbial activity was even observed in the presence of alkylbenzenes down to pH 2.5 with mixed cultures, which is quite unusual and explains the ability of the present biocatalyst to remove alkylbenzenes with high efficiency in biofilters under acidic conditions.


Bioresource Technology | 2012

Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification

Eldon R. Rene; Balsam T. Mohammad; María Carmen Veiga; Christian Kennes

The effect of relative humidity (RH: 30% to >95%) of a gas-phase mixture composed of benzene, toluene, ethylbenzene and para-, meta- and ortho-xylenes (BTEX), inlet concentrations (0.2-12.6 g m(-3)), and empty bed residence times (EBRTs) (48-144 s) was tested in a fungi-dominant biofilter. A maximum elimination capacity (EC(max)) of 244.2 gBTEX m(-3) h(-1) was achieved at a total inlet loading rate (ILR(T)) of 371.2 gBTEXm(-3) h(-1) (RH: 65%). The transient-state response was tested by increasing the ILR(T), in two steps, from ~50 to 850 gm(-3) h(-1) and from ~50 to 320 g m(-3) h(-1), at a constant EBRT of 41.7s. Increasing the ILR(T) reduced the total BTEX removal efficiency (RE(T)) from >97% to 35%, and from >90% to 60% during medium and high shock-load, respectively. When subjected to short (4d) and long-term (7d) shut-down periods, the biofilter was able to recover high EC(max) of, respectively, 200 and 72 gBTEX m(-)3 h(-1) after resuming operation.

Collaboration


Dive into the María Carmen Veiga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eldon R. Rene

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

M. Eiroa

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar

A. Vilar

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar

M. Soto

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

J.M. Lema

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

L. Amor

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar

R. Méndez

University of Santiago de Compostela

View shared research outputs
Top Co-Authors

Avatar

M. Ben

University of A Coruña

View shared research outputs
Top Co-Authors

Avatar

Balsam T. Mohammad

German-Jordanian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge