Maria Casapu
Karlsruhe Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Casapu.
Journal of Synchrotron Radiation | 2007
Stefan Hannemann; Maria Casapu; Jan-Dierk Grunwaldt; Peter Haider; Philippe Trüssel; Alfons Baiker; Edmund Welter
A new spectroscopic cell suitable for the analysis of heterogeneous catalysts by fluorescence EXAFS (extended X-ray absorption fine structure), transmission EXAFS and X-ray diffraction during in situ treatments and during catalysis is described. Both gas-phase and liquid-phase reactions can be investigated combined with on-line product analysis performed either by mass spectrometry or infrared spectroscopy. The set-up allows measurements from liquid-nitrogen temperature to 973 K. The catalysts are loaded preferentially as powders, but also as self-supporting wafers. The reaction cell was tested in various case studies demonstrating its flexibility and its wide applicability from model studies at liquid-nitrogen temperature to operando studies under realistic reaction conditions. Examples include structural studies during (i) the reduction of alumina-supported noble metal particles prepared by flame-spray pyrolysis and analysis of alloying in bimetallic noble metal particles (0.1%Pt-0.1%Pd/Al(2)O(3), 0.1%Pt-0.1%Ru/Al(2)O(3), 0.1%Pt-0.1%Rh/Al(2)O(3), 0.1%Au-0.1%Pd/Al(2)O(3)), (ii) reactivation of aged 0.8%Pt-16%BaO-CeO(2) NO(x) storage-reduction catalysts including the NO(x) storage/reduction cycle, and (iii) alcohol oxidation over gold catalysts (0.6%Au-20%CuO-CeO(2)).
Topics in Catalysis | 2013
Alexey Boubnov; Andreas M. Gänzler; Sabrina Conrad; Maria Casapu; Jan-Dierk Grunwaldt
Fresh and mildly aged Pt/Al2O3 model diesel oxidation catalysts with small and large noble metal particle size have been studied during CO oxidation under lean burn reaction conditions to gain more insight into the structure and oscillatory reaction behaviour. The catalytic performance, CO adsorption characteristics using in situ DRIFTS and oxidation state using in situ XAS were correlated. Stable and pronounced oscillations only occurred over the catalyst with smaller particle sizes. Characteristic for this catalyst are low-coordinated surface Pt sites (more corner and edge atoms) which seem to become oxidized at elevated temperature as evidenced by in situ DRIFTS and in situ XAS. In situ XAS further uncovered that the oxidation of the Pt surface starts from the end of the catalyst bed and the oxidation state oscillates like the catalytic activity.
Chemcatchem | 2014
Marina Tepluchin; Maria Casapu; Alexey Boubnov; Henning Lichtenberg; Di Wang; Sven Kureti; Jan-Dierk Grunwaldt
MnOx and FeOx‐based catalysts supported on γ‐Al2O3 (0.1–20 wt %) were prepared by using two methods: incipient wetness impregnation and single‐step flame spray pyrolysis. The effect of the structural properties and composition on the CO oxidation activity was systematically evaluated and correlated with the preparation methods. The characterization of the samples by XRD, X‐ray absorption spectroscopy, TEM, and temperature‐programmed reduction by hydrogen revealed that, in contrast to the use of incipient wetness impregnation, flame spray pyrolysis leads to the formation of highly dispersed homogeneously distributed FeOx and MnOx species. A partial incorporation of Fe and Mn ions into the γ‐Al2O3 lattice for low metal oxide loadings and for samples prepared by flame spray pyrolysis was observed. In general, the CO oxidation activity increased with the transition metal oxide loading. Below 200 °C, Mn‐based catalysts demonstrated the highest catalytic performance. However, the addition of water decreased the performance, especially at lower temperatures, which demonstrates the competitive adsorption on the active sites. The presence of NO had no effect on the CO conversion. A significant effect of the preparation method on the catalytic performance was observed during hydrothermal aging. The superior distribution of the active species obtained by flame spray pyrolysis leads to thermally more stable catalysts.
Catalysis Science & Technology | 2015
Marina Tepluchin; David K. Pham; Maria Casapu; Lutz Mädler; Sven Kureti; Jan-Dierk Grunwaldt
MnOx/Al2O3 and FeOx/Al2O3 samples were prepared by two-nozzle flame spray pyrolysis to minimize the formation of composite phases. For this purpose, manganese(II) naphthenate or iron(II) naphthenate and aluminium-sec-butylate were sprayed in separate flames and both the structure and the catalytic performance of the materials in CO oxidation were compared to the corresponding single-nozzle flame spray pyrolysis catalysts. Characterization by X-ray diffraction, diffuse reflectance UV-vis spectroscopy and X-ray absorption near-edge structure unravelled that the phases formed in double-flame spray pyrolysis (DFSP) were significantly different from those in single-flame spray pyrolysis; highly dispersed separate entities of manganese/iron oxide and alumina were identified in this case. Despite a slightly lower BET surface area the DFSP prepared samples performed generally better in catalytic CO oxidation than those derived from one single flame. In addition, the manganese-based catalysts were more effective for CO conversion than the corresponding iron-based samples, even at low concentrations.
Angewandte Chemie | 2017
Andreas M. Gänzler; Maria Casapu; Philippe Vernoux; Stéphane Loridant; Francisco J. Cadete Santos Aires; Thierry Epicier; Benjamin Betz; Rüdiger Hoyer; Jan-Dierk Grunwaldt
A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 °C) and exploited to enhance the catalytic activity of Pt/CeO2 -based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 °C. A protocol with reducing pulses at 250-400 °C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H2 >C3 H6 ). This dynamic nature of Pt on ceria at such low temperatures (250-500 °C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst.
RSC Advances | 2015
Georg Hofmann; Amélie Rochet; Elen Ogel; Maria Casapu; Stephan Ritter; Malte Ogurreck; Jan-Dierk Grunwaldt
Catalyst aging effects were analyzed using X-ray absorption micro-computed tomography in combination with conventional characterization methods on various length scales ranging from nm to μm to gain insight into deactivation mechanisms. For this purpose, a 4 wt% Pt/Al2O3 model exhaust gas catalyst was coated on a cordierite honeycomb and subjected to sequential thermal aging in static air at 950 °C for 4, 8, 12 and 24 hours. The aging was followed on the one hand by traditional methods, i.e. CO-oxidation activity, scanning and transmission electron microscopy (SEM, TEM), and X-ray diffraction (XRD). On the other hand, all intermediate aging steps were captured by X-ray absorption micro-computed tomography (μ-CT) with 1.27 μm voxel size using a quasi in situ approach as complementary tool. The μ-CT data allowed comparing exactly the same position after each treatment using a special alignment procedure during data analysis which took into account that the sample was remounted on the sample holder. A growth of the initially nanometer-sized Pt particles into larger crystals as well as its agglomeration was found, preferentially in voids between support grains. Sintering occurred especially around the larger particles, which is in line with the Ostwald ripening mechanism reported for this system on a nanometer scale. The distribution of chemical elements in an embedded and mechanically cross-sectioned honeycomb was additionally mapped by an electron probe micro analyzer (EPMA), which in agreement to the μ-CT results shows no diffusion of Pt into the cordierite. Together with studies on the nanometer scale, these results allow a more thorough multi-scale modeling of exhaust gas catalysts, especially also during aging.
Chemcatchem | 2017
Elen Ogel; Sabrina A. Müller; André Sackmann; Fabian Gyger; Pascal Bockstaller; Eugen Brose; Maria Casapu; Ludger Schöttner; D. Gerthsen; Claus Feldmann; Jan-Dierk Grunwaldt
The catalytic activity of Pd‐SnO2 core@shell nanocomposites in the oxidation of CO and their CO‐sensing behavior were compared. For this purpose, Pd particles were placed on the inside and the outside of SnO2 hollow spheres, as demonstrated by electron tomography, X‐ray photoelectron spectroscopy, and X‐ray absorption spectroscopy. Both the sensing and catalytic effect were studied in a systematic manner on such nanocomposites, and striking differences in the catalytic performance of the nanocomposites in CO oxidation and CO and H2 sensing were found. At low temperatures, SnO2@Pd was found to be a good sensor, and the light‐off temperature was significantly lower than that of Pd@SnO2. Above the ignition temperature, CO was probably rapidly removed from the gas so that the sensing effect disappeared. This demonstrated that understanding of the sensing and catalytic behavior can help in unraveling the functional properties of core@shell and Pd‐SnO2 nanocomposites in more detail.
Journal of Physical Chemistry C | 2010
Maria Casapu; Oliver Kröcher; Max Mehring; Maarten Nachtegaal; C.N. Borca; Messaoud Harfouche; Daniel Grolimund
Applied Catalysis B-environmental | 2006
Maria Casapu; Jan-Dierk Grunwaldt; Marek Maciejewski; Meike Wittrock; Ulrich Dr. Göbel; Alfons Baiker
Journal of Physical Chemistry C | 2014
Dmitry E. Doronkin; Maria Casapu; Tobias Günter; Oliver Müller; Ronald Frahm; Jan-Dierk Grunwaldt