Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Claudia Gonzalez Deniselle is active.

Publication


Featured researches published by Maria Claudia Gonzalez Deniselle.


Neurobiology of Disease | 2002

Progesterone neuroprotection in the Wobbler mouse, a genetic model of spinal cord motor neuron disease

Maria Claudia Gonzalez Deniselle; Juan José López-Costa; Jorge Pecci Saavedra; Luciana Pietranera; Susana L. Gonzalez; Laura Garay; Rachida Guennoun; Michael Schumacher; Alejandro F. De Nicola

Motor neuron degeneration characterizes the spinal cord of patients with amyotrophic lateral sclerosis and the Wobbler mouse mutant. Considering that progesterone (PROG) provides neuroprotection in experimental ischemia and injury, its potential role in neurodegeneration was studied in the murine model. Two-month-old symptomatic Wobbler mice were left untreated or received sc a 20-mg PROG implant for 15 days. Both light and electron microscopy of Wobbler mice spinal cord showed severely affected motor neurons with profuse cytoplasmic vacuolation of the endoplasmic reticulum and/or Golgi apparatus and ruptured mitochondria with damaged cristae, a profile indicative of a type II cytoplasmic form of cell death. In contrast to untreated mice, neuropathology was less severe in Wobbler mice receiving PROG; including a reduction of vacuolation and of the number of vacuolated cells and better conservation of the mitochondrial ultrastructure. In biochemical studies, we determined the mRNA for the alpha3 subunit of Na,K-ATPase, a neuronal enzyme controlling ion fluxes, neurotransmission, membrane potential, and nutrient uptake. In untreated Wobbler mice, mRNA levels in motor neurons were reduced by half compared to controls, whereas PROG treatment of Wobbler mice restored the expression of alpha3 subunit Na,K-ATPase mRNA. Therefore, PROG was able to rescue motor neurons from degeneration, based on recovery of histopathological abnormalities and of mRNA levels of the sodium pump. However, because the gene mutation in Wobbler mice is still unknown, further studies are needed to unveil the action of PROG and the mechanism of neuronal death in this genetic model of neurodegeneration.


The Journal of Steroid Biochemistry and Molecular Biology | 2007

Effects of progesterone in the spinal cord of a mouse model of multiple sclerosis

Laura Garay; Maria Claudia Gonzalez Deniselle; Analia Lima; Paulina Roig; Alejandro F. De Nicola

The spinal cord is a target of progesterone (PROG), as demonstrated by the expression of intracellular and membrane PROG receptors and by its myelinating and neuroprotective effects in trauma and neurodegeneration. Here we studied PROG effects in mice with experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis characterized by demyelination and immune cell infiltration in the spinal cord. Female C57BL/6 mice were immunized with a myelin oligodendrocyte glycoprotein peptide (MOG(40-54)). One week before EAE induction, mice received single pellets of PROG weighing either 20 or 100 mg or remained free of steroid treatment. On average, mice developed clinical signs of EAE 9-10 days following MOG administration. The spinal cord white matter of EAE mice showed inflammatory cell infiltration and circumscribed demyelinating areas, demonstrated by reductions of luxol fast blue (LFB) staining, myelin basic protein (MBP) and proteolipid protein (PLP) immunoreactivity (IR) and PLP mRNA expression. In motoneurons, EAE reduced the expression of the alpha 3 subunit of Na,K-ATPase mRNA. In contrast, EAE mice receiving PROG showed less inflammatory cell infiltration, recovery of myelin proteins and normal grain density of neuronal Na,K-ATPase mRNA. Clinically, PROG produced a moderate delay of disease onset and reduced the clinical scores. Thus, PROG attenuated disease severity, and reduced the inflammatory response and the occurrence of demyelination in the spinal cord during the acute phase of EAE.


Journal of Neurotrauma | 2002

Cellular Basis for Progesterone Neuroprotection in the Injured Spinal Cord

Florencia Labombarda; Susana L. Gonzalez; Maria Claudia Gonzalez Deniselle; Rachida Guennoun; Michael Schumacher; Alejandro F. De Nicola

Progesterone (PROG) exerts beneficial and neuroprotective effects in the injured central and peripheral nervous system. In the present work, we examine PROG effects on three measures of neuronal function under negative regulation (choline acetyltransferase [ChAT] and Na,K-ATPase) or stimulated (growth-associated protein [GAP-43]) after acute spinal cord transection injury in rats. As expected, spinal cord injury reduced ChAT immunostaining intensity of ventral horn neurons. A 3-day course of intensive PROG treatment of transected rats restored ChAT immunoreactivity, as assessed by frequency histograms that recorded shifts from predominantly light neuronal staining to medium, dark or intense staining typical of control rats. Transection also reduced the expression of the mRNA for the alpha3 catalytic and beta1 regulatory subunits of neuronal Na,K-ATPase, whereas PROG treatment restored both subunit mRNA to normal levels. Additionally, the upregulation observed for GAP-43 mRNA in ventral horn neurons in spinal cord-transected rats, was further enhanced by PROG administration. In no case did PROG modify ChAT immunoreactivity, Na,K-ATPase subunit mRNA or GAP-43 mRNA in control, sham-operated rats. Further, the PROG-mediated effects on these three markers were observed in large, presumably Lamina IX motoneurons, as well as in smaller neurons measuring approximately <500 micro2. Overall, the stimulatory effects of PROG on ChAT appears to replenish acetylcholine, with its stimulatory effects on Na,K-ATPase seems capable of restoring membrane potential, ion transport and nutrient uptake. PROG effects on GAP-43 also appear to accelerate reparative responses to injury. As the cellular basis for PROG neuroprotection becomes better understood it may prove of therapeutic benefit to spinal cord injury patients.


The Journal of Steroid Biochemistry and Molecular Biology | 2005

Progesterone neuroprotection in spinal cord trauma involves up-regulation of brain-derived neurotrophic factor in motoneurons.

Susana L. Gonzalez; Florencia Labombarda; Maria Claudia Gonzalez Deniselle; Analı́a Mougel; Rachida Guennoun; Michael Schumacher; Alejandro F. De Nicola

Progesterone (PROG) provides neuroprotection to the injured central and peripheral nervous system. These effects may be due to regulation of myelin synthesis in glial cells and also to direct actions on neuronal function. Both types of cells express classical intracellular PROG receptors (PR), while neurons additionally express the PROG membrane-binding site called 25-Dx. In motoneurons from rats with spinal cord injury (SCI), PROG restores to normal the deficient levels of choline acetyl-transferase and of alpha3 subunit Na,K-ATPase mRNA, while levels of the growth associated protein GAP-43 mRNA are further stimulated. Recent studies suggest that neurotrophins are possible mediators of hormone action, and in agreement with this assumption, PROG treatment of rats with SCI increases the expression of brain-derived neurotrophic factor (BDNF) at both the mRNA and protein levels in ventral horn motoneurons. In situ hybridization (ISH) has shown that SCI reduces BDNF mRNA levels by 50% in spinal motoneurons, while PROG administration to injured rats (4mg/kg/day during 3 days, s.c.) elicits a three-fold increase in grain density. In addition to enhancement of mRNA levels, PROG increases BDNF immunoreactivity in perikaryon and cell processes of motoneurons of the lesioned spinal cord, and also prevents the lesion-induced chromatolytic degeneration of spinal cord motoneurons as determined by Nissl staining. Our findings strongly indicate that motoneurons of the spinal cord are targets of PROG, as confirmed by the expression of PR and the regulation of molecular parameters. PROG enhancement of endogenous neuronal BDNF could provide a trophic environment within the lesioned spinal cord and might be part of the PROG activated-pathways to provide neuroprotection. Thus, PROG treatment constitutes a new approach to sustain neuronal function after injury.


The Journal of Steroid Biochemistry and Molecular Biology | 2002

Basis of progesterone protection in spinal cord neurodegeneration

Maria Claudia Gonzalez Deniselle; Juan J. López Costa; Susana L. Gonzalez; Florencia Labombarda; Laura Garay; Rachida Guennoun; Michael Schumacher; Alejandro F. De Nicola

Progesterone neuroprotection has been reported in experimental brain, peripheral nerve and spinal cord injury. To investigate for a similar role in neurodegeneration, we studied progesterone effects in the Wobbler mouse, a mutant presenting severe motoneuron degeneration and astrogliosis of the spinal cord. Implant of a single progesterone pellet (20 mg) during 15 days produced substantial changes in Wobbler mice spinal cord. Morphologically, motoneurons of untreated Wobbler mice showed severe vacuolation of intracellular organelles including mitochondria. In contrast, neuropathology was less pronounced in Wobbler mice receiving progesterone, together with a reduction of vacuolated cells and preservation of mitochondrial ultrastructure. Determination of mRNAs for the alpha 3 and beta 1 subunits of neuronal Na, K-ATPase, showed that mRNA levels in untreated mice were significantly reduced, whereas progesterone therapy re-established the expression of both subunits. Additionally, progesterone treatment of Wobbler mice attenuated the aberrant expression of the growth-associated protein (GAP-43) mRNA which otherwise occurred in motoneurons of untreated animals. The hormone, however, was without effect on astrocytosis of Wobbler mice, determined by glial fibrillary acidic protein (GFAP)-immunostaining. Lastly, progesterone treatment of Wobbler mice enhanced grip strength and prolonged survival at the end of the 15-day observation period. Recovery of morphology and molecular motoneuron parameters of Wobbler mice receiving progesterone, suggest a new and important role for this hormone in the prevention of spinal cord neurodegenerative disorders.


Brain Research | 2009

Protective effects of progesterone administration on axonal pathology in mice with experimental autoimmune encephalomyelitis

Laura Garay; Maria Claudia Gonzalez Deniselle; Maria Meyer; Juan J. López Costa; Analia Lima; Paulina Roig; Alejandro F. DeNicola

Experimental autoimmune encephalomyelitis (EAE), an induced model of Multiple Sclerosis presents spinal cord demyelination, axonal pathology and neuronal dysfunction. Previous work has shown that progesterone attenuated the clinical severity, demyelination and neuronal dysfunction of EAE mice (Garay et al., J. Steroid Biochem. Mol. Biol., 2008). Here we studied if progesterone also prevented axonal damage, a main cause of neurological disability. To this end, some axonal parameters were compared in EAE mice pretreated with progesterone a week before immunization with MOG(40-54) and in a group of steroid-free EAE mice. On day 16th after EAE induction, we determined in both groups and in control mice: a) axonal density in semithin sections of the spinal cord ventral funiculus; b) appearance of amyloid precursor protein (APP) immunopositive spheroids as an index of damaged axons; c) levels of the growth associated protein GAP43 mRNA and immunopositive cell bodies, as an index of aberrant axonal sprouting. Steroid-naive EAE mice showed decreased axonal density, shrunken axons, abundance of irregular vesicular structures, degenerating APP+ axons, increased expression of GAP43 mRNA and immunoreactive protein in motoneurons. Instead, EAE mice receiving progesterone treatment showed increased axonal counts, high proportion of small diameter axons, reduced APP+ profiles, and decreased GAP43 expression. In conclusion, progesterone enhanced axonal density, decreased axonal damage and prevented GAP43 hyperexpression in the spinal cord of EAE mice. Thus, progesterone also exerts protective effects on the axonal pathology developing in EAE mice.


Neuroimmunomodulation | 2008

Steroid protection in the experimental autoimmune encephalomyelitis model of multiple sclerosis.

Laura Garay; Maria Claudia Gonzalez Deniselle; Lobke Gierman; Maria Meyer; Analia Lima; Paulina Roig; Alejandro F. De Nicola

Objectives: Based on evidence that pregnant women with multiple sclerosis (MS) show a decline in the relapse rate during the third trimester and an increase during the first 3 months postpartum, the suggestion was made that high levels of circulating sex steroids are responsible for pregnancy-mediated neuroprotection. As both estradiol (E2) and progesterone exert neuroprotective and myelinating effects on the nervous system, the effects of sex steroids were studied in the experimental autoimmune encephalomyelitis (EAE) model of MS. Methods: EAE was induced in female C57BL/6 mice by administration of a myelin oligodendrocyte protein (MOG40–45) peptide. Clinical signs of EAE, myelin protein expression and neuronal parameters were determined in mice with or without hormonal treatment. Results: Progesterone given prior to EAE induction attenuated the clinical scores of the disease, slightly delayed disease onset and decreased demyelination foci, according to luxol fast blue staining (LFB), myelin basic protein (MBP) and proteolipid protein (PLP) and mRNA expression. Motoneuron expression of Na,K-ATPase mRNA was also enhanced by progesterone. In turn, combined E2 plus progesterone therapy more effectively prevented neurological deficits, fully restored LFB staining, MBP and PLP immunoreactivity and avoided inflammatory cell infiltration. On the neuronal side, steroid biotherapy increased brain-derived neurotrophic factor (BDNF) mRNA. Conclusion: Early treatment with progesterone alone or more evidently in combination with E2 showed a clinical benefit and produced myelinating and neuroprotective effects in mice with MOG40–45-induced EAE. Therefore, sex steroids should be considered as potential novel therapeutic strategies for MS.


Journal of Molecular Neuroscience | 2006

Progesterone treatment of spinal cord injury

Alejandro F. De Nicola; Susana L. Gonzalez; Florencia Labombarda; Maria Claudia Gonzalez Deniselle; Laura Garay; Rachida Guennoun; Michael Schumacher

In addition to its traditional role in reproduction, progesterone (PROG) has demonstrated neuroprotective and promyelinating effects in lesions of the peripheral and central nervous systems, including the spinal cord. The latter is a target of PROG, as nuclear receptors, as well as membrane receptors, are expressed by neurons and/or glial cells. When spinal cord injury (SCI) is produced at the thoracic level, several genes become sensitive to PROG in the region caudal to the lesion site. Although the cellular machinery implicated in PROG neuroprotection is only emerging, neurotrophins, their receptors, and signaling cascades might be part of the molecules involved in this process. In rats with SCI, a 3-d course of PROG treatment increased the mRNA of brain-derived neurotrophic factor (BDNF) and BDNF immunoreactivity in perikaryon and processes of motoneurons, whereas chromatolysis was strongly prevented. The increased expression of BDNF correlated with increased immunoreactivity for the BDNF receptor TrkB and for phosphorylated cAMP-responsive element binding in motoneurons. In the same SCI model, PROG restored myelination, according to measurements of myelin basic protein (MBP) and mRNA levels, and further increased the density of NG2+-positive oligodendrocyte progenitors. These cells might be involved in remyelination of the lesioned spinal cord. Interestingly, similarities in the regulation of molecular parameters and some cellular events attributed to PROG and BDNF (i.e., choline acetyltransferase, Na,K-ATPase, MBP, chromatolysis) suggest that BDNF and PROG might share intracellular pathways. Furthermore, PROG-induced BDNF might regulate, in a paracrine or autocrine fashion, the function of neurons and glial cells and prevent the generation of damage.


Annals of the New York Academy of Sciences | 2003

Steroid Effects on Glial Cells

Alejandro F. De Nicola; Florencia Labombarda; Susana L. Gonzalez; Maria Claudia Gonzalez Deniselle; Rachida Guennoun; Michael Schumacher

Abstract: Repair of damage and recovery of function are fundamental endeavors for recuperation of patients and experimental animals with spinal cord injury. Steroid hormones, such as progesterone (PROG), show regenerative and myelinating properties following injury of the peripheral and central nervous system. In this work, we studied PROG effects on glial cells of the normal and transected (TRX) spinal cord, to complement previous studies in motoneurons. Both neurons and glial cells expressed the classical PROG receptor (PR), suggesting that genomic mechanisms participated in PROG action. In TRX rats, PROG treatment stimulated the number of NADPH‐diaphorase (nitric oxide synthase) active astrocytes, whereas the number of astrocytes expressing the glial fibrillary acidic protein (GFAP) was stimulated in control but not in TRX rats. PROG also stimulated the immunocytochemical staining for myelin‐basic protein (MBP) and the number of oligodendrocyte precursor cells expressing the chondroitin sulfate proteoglycan NG2 in TRX rats. In terms of beneficial or detrimental consequences, these PROG effects may be supportive of neuronal recuperation, as shown for several neuronal functional parameters that were normalized by PROG treatment of spinal cord injured animals. Thus, PROG effects on glial cells go in parallel with morphological and biochemical evidence of survival of damaged motoneurons.


Experimental Neurology | 2005

Progesterone restores retrograde labeling of cervical motoneurons in Wobbler mouse motoneuron disease

Maria Claudia Gonzalez Deniselle; Laura Garay; Susana L. Gonzalez; Rachida Guennoun; Michael Schumacher; Alejandro F. De Nicola

The Wobbler mouse, a mutant characterized by motoneuron degeneration in the cervical spinal cord, has been used to test the efficacy of novel treatments for human motoneuron diseases (HMD). Previous reports have shown that slow axonal transport is impaired in Wobblers and other models of HMD. Since progesterone (PROG) corrects some morphological, molecular, and functional abnormalities of Wobbler mice, we studied if steroid exposure for 8 weeks restored retrograde axonal transport by measuring motoneuron labeling after injection of fluorogold into the limb muscles. The dye was injected into forelimb biceps bracchii and flexor or into the rearlimb gastrocnemius muscles; 6 days later, the number of fluorescent motoneurons and the total number of cresyl violet stained motoneurons were counted in the cervical (C5-T1) or lumbar (L3-L5) spinal cord regions. A pronounced reduction (- 42.2%) of the percent of fluorescent motoneurons in Wobbler mice cervical cord was noted, which was significantly corrected after PROG treatment. In contrast, labeling of lumbar motoneurons was not reduced in Wobbler mice and was not affected by PROG treatment. In no case PROG showed an effect in control mice. Concomitantly, PROG slightly but significantly increased biceps weight of Wobbler mice. Behaviorally, PROG-treated Wobblers performed better on a motor test (hanging time from a horizontal rope) compared to untreated counterparts. We postulate a dual role for PROG in the Wobbler mouse, in part by prevention of motoneuron degeneration and also by enhancement of axonal transport. The latter mechanism could improve the traffic of neurotrophic factors from the forelimb muscles into the ailing motoneurons, improving neuromuscular function in this murine model of HMD.

Collaboration


Dive into the Maria Claudia Gonzalez Deniselle's collaboration.

Top Co-Authors

Avatar

Alejandro F. De Nicola

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Susana L. Gonzalez

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Laura Garay

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Florencia Labombarda

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Analia Lima

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Maria Meyer

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Paulina Roig

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Gisella Gargiulo Monachelli

Instituto de Biología y Medicina Experimental

View shared research outputs
Top Co-Authors

Avatar

Roberto E.P. Sica

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Gabriel Rodriguez

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge