Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Cristina Cenni is active.

Publication


Featured researches published by Maria Cristina Cenni.


Nature Neuroscience | 2007

Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition

Alessandro Sale; José Fernando Maya Vetencourt; Paolo Medini; Maria Cristina Cenni; Laura Baroncelli; Roberto De Pasquale; Lamberto Maffei

Loss of visual acuity caused by abnormal visual experience during development (amblyopia) is an untreatable pathology in adults. We report that environmental enrichment in adult amblyopic rats restored normal visual acuity and ocular dominance. These effects were due to reduced GABAergic inhibition in the visual cortex, accompanied by increased expression of BDNF and reduced density of extracellular-matrix perineuronal nets, and were prevented by enhancement of inhibition through benzodiazepine cortical infusion.


The Journal of Neuroscience | 1996

Protection of retinal ganglion cells from natural and axotomy-induced cell death in neonatal transgenic mice overexpressing bcl-2.

Lidia Bonfanti; Enrica Strettoi; Sabrina Chierzi; Maria Cristina Cenni; Xiu-Huai Liu; Jean-Claude Martinou; Lamberto Maffei; Sylvia A. Rabacchi

Approximately half of the retinal ganglion cells (RGCs) present in the rodent retina at birth normally die during early development. Overexpression of the proto-oncogene bcl-2 recently has been shown to rescue some neuronal populations from natural cell death and from degeneration induced by axotomy of nerves within the peripheral nervous system. Here we study in vivo the role of the overexpression of bcl-2 in the natural cell death of RGCs and in the degenerative process induced in these cells by transection of the optic nerve. We find that in newborn bcl-2 transgenic mice, the number of RGCs undergoing natural cell death is considerably lower than in wild-type pups. Consistently, a vast majority (90%) of the ganglion cells found in the retina of neonatal transgenics are maintained in adulthood, whereas only 40% survive in wild-type mice. After transection of the optic nerve, the number of degenerating ganglion cells, determined by counting pyknotic nuclei or nuclei with fragmented DNA, is substantially reduced in transgenic mice. In wild-type animals, almost 50% of ganglion cells degenerate in the 24 hr after the lesion, whereas almost the entire ganglion cell population survives axotomy in transgenic mice. Therefore, overexpression of bcl-2 is effective in preventing degeneration of this neuronal population, raising the possibility that ganglion cells are dependent on the endogenous expression of bcl-2 for survival. The remarkable rescue capacity of bcl-2 overexpression in these neurons makes it an interesting model for studying natural cell death and responses to injury in the CNS.


European Journal of Neuroscience | 1996

Long‐term Survival of Retina Optic Nerve Section in Adult Ganglion Cells Following bcl‐2 Transgenic Mice

Maria Cristina Cenni; Lidia Bonfanti; Jean-Claude Martinou; Gian Michele Ratto; Enrica Strettoi; Lam berto Maffei

The bcl‐2 gene codes for a protein that acts as a powerful inhibitor of active cell death. Since the transection of the optic nerve in adult mammalians starts a massive process of degeneration in retinal ganglion cells, we investigated whether the overexpression of bcl‐2 in adult transgenic mice can protect the axotomited ganglion cells. We performed intracranial optic nerve transection on both wild type and transgenic adult mice, and we tested cell survival 2 or 3.5 months after axotomy. The percentage of surviving ganglion cells after optic nerve section was computed by combining the counts of the optic nerve fibres in intact nerves with the cell density measures of the ganglion cell layer of axotomized retinae. From these data we found that in transgenic mice˜65% of ganglion cells survived 3.5 months after axotomy. In contrast, 2 months after surgery, <10% of ganglion cells were left in wild type retinae. We have also examined the morphology and fine structure of the proximal stump of the sectioned optic nerves by light and electron microscopy. In the transgenic mice a very large number of axons survived after surgery and they still exhibited fairly normal morphology and ultrastructure. On the other hand the wild type transected nerves had only a few visible axons that displayed clear signs of degeneration. We conclude that the overexpression of Bcl‐2 protein in central neurons is a very effective strategy to ensure long‐term survival in axotomized cells.


Current Biology | 2000

Brain-derived neurotrophic factor is an anterograde survival factor in the rat visual system

Matteo Caleo; Elisabetta Menna; Sabrina Chierzi; Maria Cristina Cenni; Lamberto Maffei

BACKGROUND The neurotrophins, which include nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5 and NT-6, are a family of proteins that play fundamental roles in the differentiation, survival and maintenance of peripheral and central neurons. Much research has focused on the role of neurotrophins as target-derived, retrogradely transported trophic molecules. Although there is recent evidence that BDNF and NT-3 can be transported in an anterograde direction along peripheral and central axons, there is as yet no conclusive evidence that these anterograde factors have direct post-synaptic actions. RESULTS We report that BDNF travels in an anterograde direction along the optic nerve. The anterogradely transported BDNF had rapid effects on retinal target neurons in the superior colliculus and lateral geniculate nucleus of the brain. When endogenous BDNF within the developing superior colliculus was neutralised, the rate of programmed neuronal death increased. Conversely, provision of an afferent supply of BDNF prevented the degeneration of geniculate neurons after removal of their cortical target. CONCLUSIONS BDNF released from retinal ganglion cells acts as a survival factor for post-synaptic neurons in retinal target fields.


The FASEB Journal | 2007

Retinal functional development is sensitive to environmental enrichment: a role for BDNF

Silvia Landi; Alessandro Sale; Nicoletta Berardi; Alessandro Viegi; Lamberto Maffei; Maria Cristina Cenni

Retina has long been considered less plastic than cortex or hippocampus, the very sites of experience‐dependent plasticity. Now, we show that retinal development is responsive to the experience provided by an enriched environment (EE): the maturation of retinal acuity, which is a sensitive index of retinal circuitry development, is strongly accelerated in EE rats. This effect is present also in rats exposed to EE up to P10, that is before eye opening, suggesting that factors sufficient to trigger retinal acuity development are affected by EE during the first days of life. Brain derived neurotrophic factor (BDNF) is precociously expressed in the ganglion cell layer of EE with respect to non‐EE rats and reduction of BDNF expression in EE animals counteracts EE effects on retinal acuity. Thus, EE controls the development of retinal circuitry, and this action depends on retinal BDNF expression. Landi, S., Sale, A., Berardi, N., Viegi, A., Maffei, L., Cenni, M. C. Retinal functional development is sensitive to environmental enrichment: a role for BDNF. FASEB J. 21, 130–139 (2007)


PLOS ONE | 2007

Environmental Enrichment Effects on Development of Retinal Ganglion Cell Dendritic Stratification Require Retinal BDNF

Silvia Landi; Maria Cristina Cenni; Lamberto Maffei; Nicoletta Berardi

A well-known developmental event of retinal maturation is the progressive segregation of retinal ganglion cell (RGC) dendrites into a and b sublaminae of the inner plexiform layer (IPL), a morphological rearrangement crucial for the emergence of the ON and OFF pathways. The factors regulating this process are not known, although electrical activity has been demonstrated to play a role. Here we report that Environmental Enrichment (EE) accelerates the developmental segregation of RGC dendrites and prevents the effects exerted on it by dark rearing (DR). Development of RGC stratification was analyzed in a line of transgenic mice expressing plasma-membrane marker green fluorescent protein (GFP) under the control of Thy-1 promoter; we visualized the a and b sublaminae of the IPL by using an antibody selectively directed against a specific marker of cholinergic neurons. EE precociously increases Brain Derived Neurotrophic Factor (BDNF) in the retina, in parallel with the precocious segregation of RGC dendrites; in addition, EE counteracts retinal BDNF reduction in DR retinas and promotes a normal segregation of RGC dendrites. Blocking retinal BDNF by means of antisense oligos blocks EE effects on the maturation of RGC dendritic stratification. Thus, EE affects the development of RGC dendritic segregation and retinal BDNF is required for this effect to take place, suggesting that BDNF could play an important role in the emergence of the ON and OFF pathways.


PLOS ONE | 2007

Maternal enrichment during pregnancy accelerates retinal development of the fetus.

Alessandro Sale; Maria Cristina Cenni; Francesca Ciucci; Elena Putignano; Sabrina Chierzi; Lamberto Maffei

The influence of maternal environment on fetal development is largely unexplored, the available evidence concerns only the deleterious effects elicited by prenatal stress. Here we investigated the influence of prenatal enrichment on the early development of the visual system in the fetus. We studied the anatomical development of the rat retina, by analyzing the migration of neural progenitors and the process of retinal ganglion cell death, which exerts a key role in sculpturing the developing retinal system at perinatal ages. The number of apoptotic cells in the retinal ganglion cell layer was analyzed using two distinct methods: the presence of pyknotic nuclei stained for cresyl violet and the appearance of DNA fragmentation (Tunel method). We report that environmental enrichment of the mother during pregnancy affects the structural maturation of the retina, accelerating the migration of neural progenitors and the dynamics of natural cell death. These effects seem to be under the control of insulin-like growth factor-I: its levels, higher in enriched pregnant rats and in their milk, are increased also in their offspring, its neutralization abolishes the action of maternal enrichment on retinal development and chronic insulin-like growth factor-I injection to standard-reared females mimics the effects of enrichment in the fetuses. Thus, the development of the visual system is sensitive to environmental stimulation during prenatal life. These findings could have a bearing in orienting clinical research in the field of prenatal therapy.


The Journal of Neuroscience | 2013

Enriched Early Life Experiences Reduce Adult Anxiety-Like Behavior in Rats: A Role for Insulin-Like Growth Factor 1

Sara Baldini; Laura Restani; Laura Baroncelli; Maila Coltelli; Roberta Franco; Maria Cristina Cenni; Lamberto Maffei; Nicoletta Berardi

Early life experiences can affect brain development, contributing to shape interindividual differences in stress vulnerability and anxiety-like behavior. In rodents, high levels of maternal care have long-lasting positive effects on the behavior of the offspring and stress response; post-weaning rearing in an enriched environment (EE) or massage counteract the negative effects of maternal separation or prenatal stressors. We recently found that insulin-like growth factor 1 (IGF-1) is a key mediator of early EE or massage on brain development. Whether early enrichment of experience can induce long-lasting effects on anxiety-like behavior and whether IGF-1 is involved in these effects is not known. We assessed anxiety-like behavior by means of the elevated plus maze in control adult rats and in adult rats subjected to early EE or to massage. We found that both EE and massage reduced adult anxiety-like behavior. Early IGF-1 systemic injections in rat pups reared in standard condition mimic the effects of EE and massage, reducing anxiety-like behavior in the adult; blocking early IGF-1 action in massaged and EE animals prevents massage and EE effects. In EE and IGF-1-treated animals, we assessed the hippocampal expression of glucocorticoid receptors (GRs) at postnatal day 12 (P12) and P60, finding a significantly higher GR expression at P60 for both treatments. These results suggest that IGF-1 could be involved in mediating the long-lasting effects of early life experiences on vulnerability/resilience to stress in adults.


Neuropharmacology | 2012

Enriched experience and recovery from amblyopia in adult rats: Impact of motor, social and sensory components

Laura Baroncelli; Joyce Bonaccorsi; Marco Milanese; Tiziana Bonifacino; Francesco Giribaldi; Ilaria Manno; Maria Cristina Cenni; Nicoletta Berardi; Giambattista Bonanno; Lamberto Maffei; Alessandro Sale

Amblyopia is one of the most common forms of visual impairment, arising from an early functional imbalance between the two eyes. It is currently accepted that, due to a lack of neural plasticity,amblyopia is an untreatable pathology in adults. Environmental enrichment (EE) emerged as a strategy highly effective in restoring plasticity in adult animals, eliciting recovery from amblyopia through a reduction of intracortical inhibition. It is unknown whether single EE components are able to promote plasticity in the adult brain, crucial information for designing new protocols of environmental stimulation suitable for amblyopic human subjects. Here, we assessed the effects of enhanced physical exercise,increased social interaction, visual enrichment or perceptual learning on visual function recovery in adult amblyopic rats. We report a complete rescue of both visual acuity and ocular dominance in exercised rats, in animals exposed to visual enrichment and in animals engaged in perceptual learning.These effects were accompanied by a reduced inhibition/excitation balance in the visual cortex. In contrast, we did not detect any sign of recovery in socially enriched rats or in animals practicing a purely associative visual task. These findings could have a bearing in orienting clinical research in the field of amblyopia therapy.


Molecular and Cellular Neuroscience | 2003

The anterogradely transported BDNF promotes retinal axon remodeling during eye specific segregation within the LGN

Elisabetta Menna; Maria Cristina Cenni; Sibel Naska; Lamberto Maffei

Neurotrophins have been implicated in regulating many aspects of neuronal development and plasticity, including dendritic and axonal elaboration, by acting primarily as target derived trophic factors. Recently, we have shown that brain-derived neurotrophic factor (BDNF) is produced by retinal ganglion cells (RGCs) and travels in an anterograde direction along the optic nerve in neonatal rats. Here, we have assessed whether the anterogradely transported BDNF plays a role in shaping the retinogeniculate connectivity during development. We used intraocular injections of antisense oligonucleotides to suppress selectively retinal synthesis and anterograde transport of BDNF in rat pups. We found that in the absence of endogenous BDNF, RGC axons retract from their target in the dorsal lateral geniculate nucleus (dLGN). The blockade of BDNF action at the retinal level with the tyrosine kinase inhibitor, K252a, failed to produce this effect, suggesting an anterograde action of the endogenous BDNF. Moreover, the effects of BDNF removal on RGC fibers were evident only during a narrow temporal window coincident with the critical period for the retinothalamic refinement, indicating a role for BDNF on growth and elaboration of RGC axons rather than on their maintenance. Altogether these results propose a novel role for BDNF in the elaboration of retinogeniculate axons.

Collaboration


Dive into the Maria Cristina Cenni's collaboration.

Top Co-Authors

Avatar

Lamberto Maffei

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandro Sale

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrica Strettoi

National Research Council

View shared research outputs
Top Co-Authors

Avatar

Matteo Caleo

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge