Maria Cristina Cintra Gomes-Marcondes
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Hotspot
Dive into the research topics where Maria Cristina Cintra Gomes-Marcondes is active.
Publication
Featured researches published by Maria Cristina Cintra Gomes-Marcondes.
Cancer Letters | 2002
Maria Cristina Cintra Gomes-Marcondes; Michael J. Tisdale
Muscle wasting in cancer cachexia is associated with increased levels of malondialdehyde (MDA) in gastrocnemius muscles, suggesting an increased oxidative stress. To determine whether oxidative stress contributes to muscle protein catabolism, an in vitro model system, consisting of C2C12 myotubes, was treated with either 0.2 mM FeSO4, 0.1 mM H2O2, or both, to replicate the rise in MDA content in cachexia. All treatments caused an increased protein catabolism and a decreased myosin expression. There was an increase in the proteasome chymotrypsin-like enzyme activity, while immunoblotting showed an increased expression of the 20S proteasome alpha-subunits, p42, and the ubiquitin-conjugating enzyme, E214k. These results show that mild oxidative stress increases protein degradation in skeletal muscle by causing an increased expression of the major components of the ubiquitin-proteasome pathway.
Diabetes | 2008
Eduardo R. Ropelle; José Rodrigo Pauli; Maria Fernanda A. Fernandes; Silvana A. Rocco; Rodrigo Miguel Marin; Joseane Morari; Kellen K. Souza; Marília M. Dias; Maria Cristina Cintra Gomes-Marcondes; José Antonio Rocha Gontijo; Kleber G. Franchini; Lício A. Velloso; Mario J.A. Saad; José B.C. Carvalheira
OBJECTIVE—A high-protein diet (HPD) is known to promote the reduction of body fat, but the mechanisms underlying this change are unclear. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) function as majors regulators of cellular metabolism that respond to changes in energy status, and recent data demonstrated that they also play a critical role in systemic energy balance. Here, we sought to determine whether the response of the AMPK and mTOR pathways could contribute to the molecular effects of an HPD. RESEARCH DESIGN AND METHODS—Western blotting, confocal microscopy, chromatography, light microscopy, and RT-PCR assays were combined to explore the anorexigenic effects of an HPD. RESULTS—An HPD reduced food intake and induced weight loss in both normal rats and ob/ob mice. The intracerebroventricular administration of leucine reduced food intake, and the magnitude of weight loss and reduction of food intake in a leucine-supplemented diet are similar to that achieved by HPD in normal rats and in ob/ob mice, suggesting that leucine is a major component of the effects of an HPD. Leucine and HPD decrease AMPK and increase mTOR activity in the hypothalamus, leading to inhibition of neuropeptide Y and stimulation of pro-opiomelanocortin expression. Consistent with a cross-regulation between AMPK and mTOR to control food intake, our data show that the activation of these enzymes occurs in the same specific neuronal subtypes. CONCLUSIONS—These findings provide support for the hypothesis that AMPK and mTOR interact in the hypothalamus to regulate feeding during HPD in a leucine-dependent manner.
British Journal of Cancer | 2002
Maria Cristina Cintra Gomes-Marcondes; Helen J. Smith; J.C. Cooper; Michael J. Tisdale
The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 μM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the ‘chymotrypsin-like’ enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia.
Brazilian Journal of Medical and Biological Research | 2003
Maria Cristina Cintra Gomes-Marcondes; Gislaine Ventrucci; M.T. Toledo; L. Cury; J.C. Cooper
Cancer cachexia induces host protein wastage but the mechanisms are poorly understood. Branched-chain amino acids play a regulatory role in the modulation of both protein synthesis and degradation in host tissues. Leucine, an important amino acid in skeletal muscle, is higher oxidized in tumor-bearing animals. A leucine-supplemented diet was used to analyze the effects of Walker 256 tumor growth on body composition in young weanling Wistar rats divided into two main dietary groups: normal diet (N, 18% protein) and leucine-rich diet (L, 15% protein plus 3% leucine), which were further subdivided into control (N or L) or tumor-bearing (W or LW) subgroups. After 12 days, the animals were sacrificed and their carcass analyzed. The tumor-bearing groups showed a decrease in body weight and fat content. Lean carcass mass was lower in the W and LW groups (W = 19.9 0.6, LW = 23.1 1.0 g vs N = 29.4 1.3, L = 28.1 1.9 g, P < 0.05). Tumor weight was similar in both tumor-bearing groups fed either diet. Western blot analysis showed that myosin protein content in gastrocnemius muscle was reduced in tumor-bearing animals (W = 0.234 0.033 vs LW = 0.598 0.036, N = 0.623 0.062, L = 0.697 0.065 arbitrary intensity, P < 0.05). Despite accelerated tumor growth, LW animals exhibited a smaller reduction in lean carcass mass and muscle myosin maintenance, suggesting that excess leucine in the diet could counteract, at least in part, the high host protein wasting in weanling tumor-bearing rats.
Phytotherapy Research | 2011
Rebeka Tomasin; Maria Cristina Cintra Gomes-Marcondes
Cancer is diagnosed in approximately 11 million people and is responsible for almost 8 million deaths worldwide every year. Research in cancer control has shown the importance of co‐adjuvant therapies. Aloe vera may reduce tumour mass and metastasis rates, while honey may inhibit tumour growth. This study verified the influence of Aloe vera and honey on tumour growth and in the apoptosis process by assessing tumour size, the cell proliferation rate (Ki67‐LI) and Bax/Bcl‐2 expression at 7, 14 and 20 days after Walker 256 carcinoma implant in Wistar rats distributed into two groups: the WA group – tumour‐bearing rats that received a gavage with a 670 µL/kg dose of Aloe vera and honey solution daily, and the CW group – tumour‐bearing rats which received only a 0.9% NaCl solution. The effect of Aloe vera and honey against tumour growth was observed through a decrease in relative weight (%) and Ki67‐LI in tumours from the WA group compared with those from the CW group. The Bax/Bcl‐2 ratio increased in tumours from the WA group at all tested timepoints. These data suggest Aloe vera and honey can modulate tumour growth by reducing cell proliferation and increasing apoptosis susceptibility. Copyright
The Prostate | 2009
Esdras Launi Oliveira Escobar; Maria Cristina Cintra Gomes-Marcondes; Hernandes F. Carvalho
Fatty acids are among the most important nutritional factors associated with the ethiopathogenesis of prostate cancer, therefore the main objective of this work was to evaluate the effect of quality of fatty acid on the rat ventral prostate growth, tissue organization, and expression of androgen receptor (AR) and peroxisome proliferation activator receptor γ (PPARγ).
Biochemical and Biophysical Research Communications | 2011
Camila A. Camargo; Maria Eleonora F. da Silva; Rodrigo A. Silva; Giselle Z. Justo; Maria Cristina Cintra Gomes-Marcondes; Hiroshi Aoyama
Quercetin, a flavonoid abundantly present in fruit, vegetables, wine and tea, has revealed several properties such as antioxidant, antiproliferative and anticancer. Cachexia is a poorly understood syndrome present in already compromised cancer patients, decreasing the quality of life and increasing mortality. Many studies have been performed in an attempt to discover an effective treatment for cachexia, but none of the tested therapies has fulfilled expectations. The objective of the present study was to analyze the effect of quercetin in the therapeutic treatment of cachexia and reversion of tumor growth in rats bearing Walker 256 carcinosarcoma (W256). Rats bearing W256 were treated daily with I.P. quercetin injections, at different doses (10, 15, 25 and 35 mg/kg). The results show that 10 mg/kg quercetin inhibited tumor growth by about 50% (ED(50)) when compared with controls (CTR). Moreover, two animals of this group presented complete tumor regression. Matrix metalloproteinase-2 (MMP-2) activity and vascular endothelial growth factor (VEGF) expression decreased in rats bearing W256 treated with 10 mg/kg quercetin when compared with CTR. Thus, the inhibition of tumor growth, survival increase, decrease of MMP-2 and VEGF levels and reduction of cachexia in animals treated with quercetin strongly support the anticancer function of this flavonoid.
Brazilian Journal of Medical and Biological Research | 2001
Gislaine Ventrucci; M.A.R. Mello; Maria Cristina Cintra Gomes-Marcondes
Cancer patients present high mobilization of host protein, with a decrease in lean body mass and body fat depletion occurring in parallel to neoplastic growth. Since leucine is one of the principal amino acids used by skeletal muscle for energy, we investigated the changes in body composition of pregnant tumor-bearing rats after a leucine-supplemented diet. Sixty pregnant Wistar rats divided into six groups were fed a normal protein diet (18%, N) or a leucine-supplemented diet (3% L-leucine, L). The pregnant groups were: control (CN), Walker 256 carcinoma-bearing rats (WN), control rats pair-fed with tumor-bearing rats (pfN), leucine-supplemented (CL), leucine-supplemented tumor-bearing (WL), and leucine-supplemented rats pair-fed with tumor-bearing rats (pfL). At the end of pregnancy, all animals were sacrificed and body weight and tumor and fetal weight were determined. The carcasses were then analyzed for water, fat and total, collagen and non-collagen nitrogen content. Carcass weight was reduced in the WN, WL, pfN and pfL groups compared to control. The lean body mass and total carcass nitrogen were reduced in both tumor-bearing groups. Despite tumor growth and a decrease in fetal weight, there was a slight decrease in collagen (7%) and non-collagen nitrogen (8%) in the WL group compared with the WN group which showed a decrease of 8 and 12%, respectively. Although the WL group presented severe tumor growth effects, total carcass nitrogen and non-collagen nitrogen were particularly higher in this leucine-supplemented group compared to the WN group. These data suggest that the leucine-supplemented diet had a beneficial effect, probably attenuating body wasting.
BMC Cancer | 2007
Gislaine Ventrucci; Maria Alice Rostom de Mello; Maria Cristina Cintra Gomes-Marcondes
BackgroundCancer-cachexia induces a variety of metabolic disorders on protein turnorver, decreasing protein synthesis and increasing protein degradation. Controversly, insulin, other hormones, and branched-chain amino acids, especially leucine, stimulate protein synthesis and modulate the activity of translation initiation factors involved in protein synthesis. Since the tumour effects are more pronounced when associated with pregnancy, ehancing muscle-wasting proteolysis, in this study, the influence of a leucine-rich diet on the protein synthesis caused by cancer were investigated.MethodsPregnant rats with or without Walker 256 tumour were distributed into six groups. During 20 days of experiment, three groups were fed with a control diet: C – pregnant control, W – tumour-bearing, and P – pair-fed, which received the same amount of food as ingested by the W group; three other groups of pregnant rats were fed a leucine-rich diet: L – pregnant leucine, WL – tumour-bearing, and PL – pair-fed, which received the same amount of food as ingested by the WL group.ResultsThe gastrocnemius muscle of WL rats showed increased incorporation of leucine in protein compared to W rats; the leucine-rich diet also prevented the decrease in plasma insulin normally seen in W. The expression of translation initiation factors increased when tumour-bearing rats fed leucine-rich diet, with increase of ~35% for eIF2α and eIF5, ~17% for eIF4E and 20% for eIF4G; the expression of protein kinase S6K1 and protein kinase C was also highly enhanced.ConclusionThe results suggest that a leucine-rich diet increased the protein synthesis in skeletal muscle in tumour-bearing rats possibly through the activation of eIF factors and/or the S6kinase pathway.
Nutrition and Cancer | 2010
Emilianne Miguel Salomão; Aline Toneto; Gisele O. Silva; Maria Cristina Cintra Gomes-Marcondes
Leucine-supplemented diet can recover lean body mass and preserve muscle protein mass. Additionally, physical exercise can be an excellent alternative to improve the rehabilitation of cancer patients. Knowing these facts, we examined the effects of a leucine-rich diet with or without physical aerobic exercise on muscle protein metabolism in Walker tumor-bearing rats. Young rats were divided into 4 groups that did or did not perform light aerobic exercise (swim training) and were on a leucine-rich diet or a control diet for 2 mo. After this time, these animals were implanted or not with tumors (subcutaneously) following groups for either control diet or leucine-rich diet fed rats: control, trained, tumor-bearing, and trained tumor-bearing. Twenty-one days after implantation, the tumor growth induced a decrease in the muscle protein synthesis and increased the catabolic process, which was associated with an increase in the expression of the ubiquitin-proteasome subunits (20S, 19S, and 11S). In contrast, the exercise program minimized the muscle degradation process and increased muscle myosin content. Additionally, leucine supplementation also modulated proteasome subunits, especially the 19S and 11S. In summary, the exercise has beneficial effects by reducing tumor growth, leading to an improvement in protein turnover especially when in conjunction with a leucine-rich diet.