Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Cristina de Sanctis is active.

Publication


Featured researches published by Maria Cristina de Sanctis.


Science | 2016

Detection of local H2O exposed at the surface of Ceres

Jean Philippe Combe; Thomas B. McCord; F. Tosi; E. Ammannito; F.G. Carrozzo; Maria Cristina de Sanctis; A. Raponi; Shane Byrne; Margaret E. Landis; Kynan H.G. Hughson; C.A. Raymond; C. T. Russell

INTRODUCTION Dwarf planet Ceres’ low average-density (2162 ± 3 kg m−3) indicates that it must contain considerable water. Water is likely a key component in the chemical evolution and internal activity of Ceres, possibly resulting in a layer of ice-rich material and perhaps liquid in the mantle. Mineral hydroxides (OH-bearing) and hydrates (H2O-bearing), such as clays, carbonates, and various salts, would be created. These hypotheses were supported by the detection of hydroxyl (OH)–rich materials, OH-bearing molecule releases, H2O vapor molecules, and haze. However, the presence of H2O on the surface has not previously been confirmed. The detection and mapping of H2O on Ceres is one objective of the Dawn spacecraft, in orbit around Ceres since March 2015. RATIONALE The purpose of the Dawn space mission at Ceres is to study the geology, geophysics, and composition remotely by means of high-resolution imagery and spectrometry. Dawn’s Visible and InfraRed Mapping Spectrometer (VIR) measures the sunlight scattered by the surface of Ceres in a range of wavelengths between 0.25 and 5.1 μm. The position and shape of absorption features in VIR reflectance spectra are sensitive to the surface mineral and molecular composition. In spectroscopy, absorption bands at 2.0, 1.65, and 1.28 μm are characteristic of vibration overtones in the H2O molecule. RESULTS Dawn has detected water-rich surface materials in a 10-km-diameter crater named Oxo, which exhibit all absorption bands that are diagnostic of the H2O molecule (see the figure). These spectra are most similar to those of H2O ice, but they could also be attributable to hydrated minerals. Oxo crater appears to be geologically very young (~1 million to 10 million years); it has sharp rims and its floor is almost devoid of impacts, suggesting a recent exposure of surface H2O. The high latitude and morphology of the Oxo crater protects much of the surface area from direct solar illumination for most of the cerean day, presenting favorable conditions for the stability of water ice or heavily hydrated salts. CONCLUSION Four ways to create or transport H2O on Ceres are considered: (i) Exposure of near-surface H2O-rich materials by a recent impact or an active landslide seems most consistent with the presence of both mineral hydrates and water ice. (ii) Release of subsurface H2O may occur on Ceres, similar to release on comet nuclei, but may never recondense on the surface. (iii) Infall of ice-bearing objects is not likely to deposit water on Ceres, because the H2O molecule likely would dissociate upon impact. (iv) Implantation of protons from the solar wind on the surface is not a probable origin of OH on Ceres because of the low flux of solar wind charged particles. We therefore conclude that surface H2O or hydrated minerals are the most plausible explanation. Dawn VIR infrared observations of Oxo crater on Ceres demonstrate the detection of H2O at the surface. (A) Reflectance spectrum collected where absorption bands of H2O at 1.28, 1.65, and 2 μm are the strongest (in blue) compared with a laboratory spectrum of H2O ice (black). The lab spectrum is scaled and vertically shifted for clarity. (B) Perspective view of Oxo crater observed by the Dawn Framing Camera (FC), where the two high-albedo areas right next to the scarps contain H2O-rich materials. The surface of dwarf planet Ceres contains hydroxyl-rich materials. Theories predict a water ice-rich mantle, and water vapor emissions have been observed, yet no water (H2O) has been previously identified. The Visible and InfraRed (VIR) mapping spectrometer onboard the Dawn spacecraft has now detected water absorption features within a low-illumination, highly reflective zone in Oxo, a 10-kilometer, geologically fresh crater, on five occasions over a period of 1 month. Candidate materials are H2O ice and mineral hydrates. Exposed H2O ice would become optically undetectable within tens of years under current Ceres temperatures; consequently, only a relatively recent exposure or formation of H2O would explain Dawn’s findings. Some mineral hydrates are stable on geological time scales, but their formation would imply extended contact with ice or liquid H2O.


The Astrophysical Journal | 2004

Spin Temperatures of Ammonia and Water Molecules in Comets

Hideyo Kawakita; Jun-ichi Watanabe; Reiko Furusho; Tetsuharu Fuse; M. T. Capria; Maria Cristina de Sanctis; G. Cremonese

The nuclear spin temperature, which is derived from the ortho-to-para abundance ratio of molecules measured in cometary comae, is a clue to the formation conditions of cometary materials, especially the physical temperature at which the molecules were formed. In this paper we present new results for the nuclear spin temperatures of ammonia in comets Hale-Bopp (C/1995 O1) and 153P/Ikeya-Zhang based on observations of NH2 at 26 and 32 K, respectively. These results are similar to previous measurements in two other comets, and the nuclear spin temperatures of ammonia in the four comets are concentrated at about 30 K. We emphasize that the nuclear spin temperatures of water measured thus far have also been about 30 K. In particular, the spin temperatures of ammonia and water are equal to each other within ±1 σ error bars in the case of comet Hale-Bopp. These nuclear spin temperatures of ammonia and water were measured under quite different conditions (heliocentric distances and gas production rates). There is no clear trend between the nuclear spin temperatures and the heliocentric distances, the gas production rates, or the orbital periods of the comets. The possibilities of the ortho-to-para conversion in the coma and in the nucleus are discussed. The present data set implies that the ortho-to-para ratios were not altered after the molecules were incorporated into the cometary nuclei. It appears that cometary ammonia and water molecules formed on cold grains at about 30 K.


Icarus | 2013

Olivine or impact melt: Nature of the ``Orange'' material on Vesta from Dawn

Lucille Le Corre; Vishnu Reddy; N. Schmedemann; Kris J. Becker; David Patrick O'Brien; N. Yamashita; Patrick N. Peplowski; Thomas H. Prettyman; Jian-Yang Li; Edward A. Cloutis; Brett W. Denevi; Thomas Kneisl; Eric E. Palmer; Robert W. Gaskell; A. Nathues; Michael J. Gaffey; David W. Mittlefehldt; W. B. Garry; H. Sierks; C. T. Russell; C.A. Raymond; Maria Cristina de Sanctis; Eleonora Ammanito

Abstract NASA’s Dawn mission observed a great variety of colored terrains on asteroid (4) Vesta during its survey with the Framing Camera (FC). Here we present a detailed study of the orange material on Vesta, which was first observed in color ratio images obtained by the FC and presents a red spectral slope. The orange material deposits can be classified into three types: (a) diffuse ejecta deposited by recent medium-size impact craters (such as Oppia), (b) lobate patches with well-defined edges (nicknamed “pumpkin patches”), and (c) ejecta rays from fresh-looking impact craters. The location of the orange diffuse ejecta from Oppia corresponds to the olivine spot nicknamed “Leslie feature” first identified by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157) from ground-based spectral observations. The distribution of the orange material in the FC mosaic is concentrated on the equatorial region and almost exclusively outside the Rheasilvia basin. Our in-depth analysis of the composition of this material uses complementary observations from FC, the visible and infrared spectrometer (VIR), and the Gamma Ray and Neutron Detector (GRaND). Several possible options for the composition of the orange material are investigated including, cumulate eucrite layer exposed during impact, metal delivered by impactor, olivine–orthopyroxene mixture and impact melt. Based on our analysis, the orange material on Vesta is unlikely to be metal or olivine (originally proposed by Gaffey (Gaffey, M.J. [1997]. Icarus 127, 130–157)). Analysis of the elemental composition of Oppia ejecta blanket with GRaND suggests that its orange material has ∼25% cumulate eucrite component in a howarditic mixture, whereas two other craters with orange material in their ejecta, Octavia and Arruntia, show no sign of cumulate eucrites. Morphology and topography of the orange material in Oppia and Octavia ejecta and orange patches suggests an impact melt origin. A majority of the orange patches appear to be related to the formation of the Rheasilvia basin. Combining the interpretations from the topography, geomorphology, color and spectral parameters, and elemental abundances, the most probable analog for the orange material on Vesta is impact melt.


Journal of Geophysical Research | 2014

Detections and geologic context of local enrichments in olivine on Vesta with VIR/Dawn data

O. Ruesch; Harald Hiesinger; Maria Cristina de Sanctis; E. Ammannito; E. Palomba; A. Longobardo; F. Zambon; F. Tosi; M. T. Capria; F. Capaccioni; A. Frigeri; S. Fonte; G. Magni; C.A. Raymond; C. T. Russell

The magmatism characterizing the early history of the asteroid Vesta has long been investigated with the mafic and ultramafic meteorites howardite, eucrite, and diogenite (HED). The lack of geologic context for the meteorites, however, has limited its understanding. Here we use the visible to near-IR (VIR) orbital observations of Vestas surface to detect relative enrichments in olivine and to study the associated geologic features. Because the near-IR signature of olivine on Vestas surface is subtle relative to the widespread pyroxene absorption bands, a method was developed to distinguish olivine enrichments from admixture of pyroxenes with high Fe2+/M1, dark material, and potential Fe-bearing glass. Relative enrichment of olivine (~<50–60 vol %) is found in 2–5 km wide, morphologically fresh areas. Our global survey reveals a dozen of these areas clustering in the eastern hemisphere of Vesta. The hemispherical coincidence with a widespread, low enrichment in diogenite-like pyroxene suggests the presence of a distinct compositional terrain. On the central mound of the Rheasilvia impact basin, no olivine enrichment was found, suggesting the absence of an olivine-dominated mantle above the basins excavation depth or, alternatively, a low amount of olivine homogeneously mixed with diogenite-like pyroxenes. Rare olivine-enriched areas in close proximity to diogenite-like pyroxene are found as part of material ejected by the Rheasilvia impact. Such cooccurrence is reminiscent of local, ultramafic lithologies within the crust. The possible formation of such lithologies on Vesta is supported by some HED meteorites dominated by olivine and orthopyroxene.


Science Advances | 2018

Nature, formation, and distribution of carbonates on Ceres

F.G. Carrozzo; Maria Cristina de Sanctis; A. Raponi; E. Ammannito; Julie C. Castillo-Rogez; Bethany L. Ehlmann; S. Marchi; N. Stein; M. Ciarniello; F. Tosi; F. Capaccioni; M. T. Capria; S. Fonte; M. Formisano; A. Frigeri; M. Giardino; A. Longobardo; G. Magni; E. Palomba; F. Zambon; C.A. Raymond; C. T. Russell

Hydrated carbonates indicate that the surface of Ceres is recent and dehydration is ongoing, implying a still-evolving body. Different carbonates have been detected on Ceres, and their abundance and spatial distribution have been mapped using a visible and infrared mapping spectrometer (VIR), the Dawn imaging spectrometer. Carbonates are abundant and ubiquitous across the surface, but variations in the strength and position of infrared spectral absorptions indicate variations in the composition and amount of these minerals. Mg-Ca carbonates are detected all over the surface, but localized areas show Na carbonates, such as natrite (Na2CO3) and hydrated Na carbonates (for example, Na2CO3·H2O). Their geological settings and accessory NH4-bearing phases suggest the upwelling, excavation, and exposure of salts formed from Na-CO3-NH4-Cl brine solutions at multiple locations across the planet. The presence of the hydrated carbonates indicates that their formation/exposure on Ceres’ surface is geologically recent and dehydration to the anhydrous form (Na2CO3) is ongoing, implying a still-evolving body.


Meteoritics & Planetary Science | 2013

The heating history of Vesta and the onset of differentiation

Michelangelo Formisano; C. Federico; D. Turrini; Angioletta Coradini; F. Capaccioni; Maria Cristina de Sanctis; Cristina Pauselli

In this work, we study the link between the evolution of the internal structure of Vesta and thermal heating due to 26 Al and 60 Fe and long-lived radionuclides, taking into account the chemical differentiation of the body and the affinity of 26 Al with silicates. We explored several thermal and structural scenarios differing in the available strength of energy due to the radiogenic heating and in the postsintering macroporosity. By comparing them with the data supplied by the HEDs and the Dawn NASA mission, we use our results to constrain the accretion and differentiation time as well as the physical properties of the core. Differentiation takes place in all scenarios in which Vesta completes its accretion in <1.4 Ma after the injection of 26 Al into the solar nebula. In all those scenarios where Vesta completes its formation in <1 Ma from the injection of 26 Al, the degree of silicate melting reaches 100 vol% throughout the whole asteroid. If Vesta completed its formation between 1 and 1.4 Ma after 26 Al injection, the degree of silicate melting exceeds 50 vol% over the whole asteroid, but reaches 100 vol% only in the hottest, outermost part of the mantle in all scenarios where the porosity is lower than 5 vol%. If the formation of Vesta occurred later than 1.5 Ma after the injection of 26 Al, the degree of silicate melting is always lower than 50 vol% and is limited only to a small region of the asteroid. The radiation at the surface dominates the evolution of the crust, which ranges in thickness from 8 to about 30 km after 5 Ma: a layer about 3-20 km thick is composed of primitive unmelted chondritic material, while a layer of about 5-10 km is eucritic.


Science Advances | 2018

Variations in the amount of water ice on Ceres’ surface suggest a seasonal water cycle

A. Raponi; Maria Cristina de Sanctis; A. Frigeri; E. Ammannito; M. Ciarniello; M. Formisano; Jean-Philippe Combe; G. Magni; F. Tosi; F.G. Carrozzo; S. Fonte; M. Giardino; Steven Peter Joy; C. Polanskey; Marc D. Rayman; F. Capaccioni; M. T. Capria; A. Longobardo; E. Palomba; F. Zambon; C.A. Raymond; C. T. Russell

Local detection of increasing amount of water ice on Ceres’ surface indicates an active body and a possible seasonal cycle. The dwarf planet Ceres is known to host a considerable amount of water in its interior, and areas of water ice were detected by the Dawn spacecraft on its surface. Moreover, sporadic water and hydroxyl emissions have been observed from space telescopes. We report the detection of water ice in a mid-latitude crater and its unexpected variation with time. The Dawn spectrometer data show a change of water ice signatures over a period of 6 months, which is well modeled as ~2-km2 increase of water ice. The observed increase, coupled with Ceres’ orbital parameters, points to an ongoing process that seems correlated with solar flux. The reported variation on Ceres’ surface indicates that this body is chemically and physically active at the present time.


Review of Scientific Instruments | 2015

The spectral imaging facility: Setup characterization

Simone De Angelis; E. Ammannito; Tatiana Di Iorio; Maria Cristina de Sanctis; Paola Manzari; Fabrizio Liberati; Fabio Tarchi; Michele Dami; Monica Olivieri; Carlo Pompei; Raffaele Mugnuolo

The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.


Astrobiology | 2017

The Close-Up Imager Onboard the ESA ExoMars Rover: Objectives, Description, Operations, and Science Validation Activities

Jean-Luc Josset; Frances Westall; Beda A. Hofmann; John G. Spray; Charles S. Cockell; S. Kempe; Andrew D. Griffiths; Maria Cristina de Sanctis; L. Colangeli; D. Koschny; Karl B. Föllmi; Eric P. Verrecchia; Larryn William Diamond; Marie Josset; Emmanuelle Javaux; F. Esposito; Matthew Gunn; Audrey L. Souchon-Leitner; Tomaso R.R. Bontognali; Oleg Korablev; Suren Erkman; Gerhard Paar; Stephan Ulamec; Frédéric Foucher; Philippe Martin; Antoine Verhaeghe; Mitko Tanevski; Jorge L. Vago

Abstract The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instruments planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars—Biosignatures—Plane...The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures. We present the CLUPI science objectives, performance, and technical description, followed by a description of the instruments planned operations strategy during the mission on Mars. CLUPI will contribute to the rover mission by surveying the geological environment, acquiring close-up images of outcrops, observing the drilling area, inspecting the top portion of the drill borehole (and deposited fines), monitoring drilling operations, and imaging samples collected by the drill. A status of the current development and planned science validation activities is also given. Key Words: Mars-Biosignatures-Planetary Instrumentation. Astrobiology 17, 595-611.


Proceedings of SPIE | 2015

VIRTIS on Rosetta: a unique technique to observe comet 67P/Churyumov-Gerasimenko – first results and prospects

Gabriele Arnold; F. Capaccioni; G. Filacchione; Stephane Erard; Dominique Bockelee-Morvan; Maria Antonietta Barucci; Maria Cristina de Sanctis; E. Palomba; M. T. Capria; P. Cerroni; P. Drossart; Cedric Leyrat; Giuseppe Piccioni; Bernard Schmitt; Frederico Tosi; Gian Paolo Tozzi; David Kappel; Kathrin Markus; A. Migliorini

VIRTIS aboard ESA’s Rosetta mission is a complex imaging spectrometer that combines three unique data channels in one compact instrument to study nucleus and coma of comet 67P/Churyumov-Gerasimenko. Two of the spectral channels are dedicated to spectral mapping (-M) at moderate spectral resolution in the range from 0.25 to 5.1 μm. The third channel is devoted to high resolution spectroscopy (-H) between 2 and 5 μm. The VIRTIS-H field of view is approximately centered in the middle of the -M image. The spectral sampling of VIRTIS-M is 1.8 nm/band below 1 μm and 9.7 nm/band between 1-5 μm, while for VIRTIS-H λ/Δλ= 1300-3000 in the 2-5 μm range. This paper describes selected findings during the pre-landing phase of Philae’s robotic subsystem and the comet’s escort phase as well as prospects of further observations. The preliminary results include studies of surface composition, coma analyses, and temperature retrieval for the nucleus surface-coma system demonstrating the capability of the instrument.

Collaboration


Dive into the Maria Cristina de Sanctis's collaboration.

Top Co-Authors

Avatar

E. Ammannito

Agenzia Spaziale Italiana

View shared research outputs
Top Co-Authors

Avatar

C.A. Raymond

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. T. Russell

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge