Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria D. Person is active.

Publication


Featured researches published by Maria D. Person.


Science | 2010

ATM Activation by Oxidative Stress

Zhi Guo; Sergei Kozlov; Martin F. Lavin; Maria D. Person; Tanya T. Paull

Stress, DNA Damage, and ATM The protein kinase ATM (ataxia-telangiectasia mutated) is a key component of the signaling pathway through which cells are protected from DNA damage. ATM becomes activated within a protein complex at sites of double-stranded breaks in DNA. ATM is also activated in response to increased production of reactive oxygen species (ROS). Such activation was thought to reflect DNA damage caused by ROS, but Guo et al. (p. 517) showed that ATM was in fact directly activated by ROS. A cysteine residue in ATM contributes to the formation of disulfide-linked dimers of activated ATM on exposure to ROS in vitro. Experiments using mutated forms of the enzyme suggested that two distinct mechanisms regulated ATM activity. The protein kinase ATM is a sensor for reactive oxygen species. The ataxia-telangiectasia mutated (ATM) protein kinase is activated by DNA double-strand breaks (DSBs) through the Mre11-Rad50-Nbs1 (MRN) DNA repair complex and orchestrates signaling cascades that initiate the DNA damage response. Cells lacking ATM are also hypersensitive to insults other than DSBs, particularly oxidative stress. We show that oxidation of ATM directly induces ATM activation in the absence of DNA DSBs and the MRN complex. The oxidized form of ATM is a disulfide–cross-linked dimer, and mutation of a critical cysteine residue involved in disulfide bond formation specifically blocked activation through the oxidation pathway. Identification of this pathway explains observations of ATM activation under conditions of oxidative stress and shows that ATM is an important sensor of reactive oxygen species in human cells.


Proceedings of the National Academy of Sciences of the United States of America | 2010

ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS

Angela Alexander; Sheng Li Cai; Jinhee Kim; Adrian Nanez; Mustafa Sahin; Kirsteen H. Maclean; Ken Inoki; Kun-Liang Guan; Jianjun Shen; Maria D. Person; Donna F. Kusewitt; Gordon B. Mills; Michael B. Kastan; Cheryl L. Walker

Ataxia-telangiectasia mutated (ATM) is a cellular damage sensor that coordinates the cell cycle with damage-response checkpoints and DNA repair to preserve genomic integrity. However, ATM also has been implicated in metabolic regulation, and ATM deficiency is associated with elevated reactive oxygen species (ROS). ROS has a central role in many physiological and pathophysiological processes including inflammation and chronic diseases such as atherosclerosis and cancer, underscoring the importance of cellular pathways involved in redox homeostasis. We have identified a cytoplasmic function for ATM that participates in the cellular damage response to ROS. We show that in response to elevated ROS, ATM activates the TSC2 tumor suppressor via the LKB1/AMPK metabolic pathway in the cytoplasm to repress mTORC1 and induce autophagy. Importantly, elevated ROS and dysregulation of mTORC1 in ATM-deficient cells is inhibited by rapamycin, which also rescues lymphomagenesis in Atm-deficient mice. Our results identify a cytoplasmic pathway for ROS-induced ATM activation of TSC2 to regulate mTORC1 signaling and autophagy, identifying an integration node for the cellular damage response with key pathways involved in metabolism, protein synthesis, and cell survival.


Cancer Research | 2004

Protein Expression Profiles in Pancreatic Adenocarcinoma Compared with Normal Pancreatic Tissue and Tissue Affected by Pancreatitis as Detected by Two-Dimensional Gel Electrophoresis and Mass Spectrometry

Jianjun Shen; Maria D. Person; Jijiang Zhu; James L. Abbruzzese; Donghui Li

Pancreatic cancer is a rapidly fatal disease, and there is an urgent need for early detection markers and novel therapeutic targets. The current study has used a proteomic approach of two-dimensional (2D) gel electrophoresis and mass spectrometry (MS) to identify differentially expressed proteins in six cases of pancreatic adenocarcinoma, two normal adjacent tissues, seven cases of pancreatitis, and six normal pancreatic tissues. Protein extracts of individual sample and pooled samples of each type of tissues were separated on 2D gels using two different pH ranges. Differentially expressed protein spots were in-gel digested and identified by MS. Forty proteins were identified, of which five [i.e., α-amylase; copper zinc superoxide dismutase; protein disulfide isomerase, pancreatic; tropomyosin 2 (TM2); and galectin-1] had been associated previously with pancreatic disease in gene expression studies. The identified proteins include antioxidant enzymes, chaperones and/or chaperone-like proteins, calcium-binding proteins, proteases, signal transduction proteins, and extracellular matrix proteins. Among these proteins, annexin A4, cyclophilin A, cathepsin D, galectin-1, 14–3-3ζ, α-enolase, peroxiredoxin I, TM2, and S100A8 were specifically overexpressed in tumors compared with normal and pancreatitis tissues. Differential expression of some of the identified proteins was further confirmed by Western blot analyses and/or immunohistochemical analysis. These results show the value of a proteomic approach in identifying potential markers for early diagnosis and therapeutic manipulation. The newly identified proteins in pancreatic tumors may eventually serve as diagnostic markers or therapeutic targets.


Oncogene | 2003

Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration

Jun Wei Liu; Jian Jun Shen; Angela Tanzillo-Swarts; Bobby Bhatia; Carlos M. Maldonado; Maria D. Person; Serrine S. Lau; Dean G. Tang

While studying Bim, a BH3-only proapoptotic protein, we identified an ∼36 kDa protein, which was abundantly expressed in all five strains of primary normal human prostate (NHP) epithelial cells but significantly reduced or lost in seven prostate cancer cell lines. The ∼36 kDa protein was subsequently identified as annexin II by proteomic approach and confirmed by Western blotting using an annexin II-specific antibody. Conventional and 2D SDS–PAGE, together with Western blotting, also revealed reduced or lost expression of annexin I in prostate cancer cells. Subcellular localization studies revealed that in NHP cells, annexin II was distributed both in the cytosol and underneath the plasma membrane, but not on the cell surface. Prostate cancer cells showed reduced levels as well as altered expression patterns of annexin II. Since annexins play important roles in maintaining Ca2+ homeostasis and regulating the cytoskeleton and cell motility, we hypothesized that the reduced or lost expression of annexin I/II might promote certain aggressive phenotypes of prostate cancer cells. In subsequent experiments, we indeed observed that restoration of annexin II expression inhibited the migration of the transfected prostate cancer cells without affecting cell proliferation or apoptosis. Hence, our results suggest that annexin II, and, likely, annexin I, may be endogenous suppressors of prostate cancer cell migration and their reduced or lost expression may contribute to prostate cancer development and progression.


Cell | 2006

Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome c and inhibiting apoptosome

Dhyan Chandra; Shawn B. Bratton; Maria D. Person; Yanan Tian; Angel G. Martin; Mary Ayres; Howard O. Fearnhead; Varsha Gandhi; Dean G. Tang

Cytochrome c (CC)-initiated Apaf-1 apoptosome formation represents a key initiating event in apoptosis. This process can be reconstituted in vitro with the addition of CC and ATP or dATP to cell lysates. How physiological levels of nucleotides, normally at high mM concentrations, affect apoptosome activation remains unclear. Here we show that physiological levels of nucleotides inhibit the CC-initiated apoptosome formation and caspase-9 activation by directly binding to CC on several key lysine residues and thus preventing CC interaction with Apaf-1. We show that in various apoptotic systems caspase activation is preceded or accompanied by decreases in overall intracellular NTP pools. Microinjection of nucleotides inhibits whereas experimentally reducing NTP pools enhances both CC and apoptotic stimuli-induced cell death. Our results thus suggest that the intracellular nucleotides represent critical prosurvival factors by functioning as natural inhibitors of apoptosome formation and a barrier that cells must overcome the nucleotide barrier to undergo apoptosis cell death.


Cell | 2007

Mec1/Tel1 Phosphorylation of the INO80 Chromatin Remodeling Complex Influences DNA Damage Checkpoint Responses

Ashby J. Morrison; Jung Ae Kim; Maria D. Person; Jessica Highland; Jing Xiao; Tammy Wehr; Sean C. Hensley; Yunhe Bao; Jianjun Shen; Sean R. Collins; Jonathan S. Weissman; Jeff Delrow; Nevan J. Krogan; James E. Haber; Xuetong Shen

The yeast Mec1/Tel1 kinases, ATM/ATR in mammals, coordinate the DNA damage response by phosphorylating proteins involved in DNA repair and checkpoint pathways. Recently, ATP-dependent chromatin remodeling complexes, such as the INO80 complex, have also been implicated in DNA damage responses, although regulatory mechanisms that direct their function remain unknown. Here, we show that the Ies4 subunit of the INO80 complex is phosphorylated by the Mec1/Tel1 kinases during exposure to DNA-damaging agents. Mutation of Ies4s phosphorylation sites does not significantly affect DNA repair processes, but does influence DNA damage checkpoint responses. Additionally, ies4 phosphorylation mutants are linked to the function of checkpoint regulators, such as the replication checkpoint factors Tof1 and Rad53. These findings establish a chromatin remodeling complex as a functional component in the Mec1/Tel1 DNA damage signaling pathway that modulates checkpoint responses and suggest that posttranslational modification of chromatin remodeling complexes regulates their involvement in distinct processes.


Journal of Biological Chemistry | 2011

Phosphorylation by CK2 Enhances the Rapid Light-induced Degradation of Phytochrome Interacting Factor 1 in Arabidopsis

Qingyun Bu; Ling Zhu; Michael D. Dennis; Lu Yu; Sheen X. Lu; Maria D. Person; Elaine M. Tobin; Karen S. Browning; Enamul Huq

The phytochrome family of sensory photoreceptors interacts with phytochrome interacting factors (PIFs), repressors of photomorphogenesis, in response to environmental light signals and induces rapid phosphorylation and degradation of PIFs to promote photomorphogenesis. However, the kinase that phosphorylates PIFs is still unknown. Here we show that CK2 directly phosphorylates PIF1 at multiple sites. α1 and α2 subunits individually phosphorylated PIF1 weakly in vitro. However, each of four β subunits strongly stimulated phosphorylation of PIF1 by α1 or α2. Mapping of the phosphorylation sites identified seven Ser/Thr residues scattered throughout PIF1. Ser/Thr to Ala scanning mutations at all seven sites eliminated CK2-mediated phosphorylation of PIF1 in vitro. Moreover, the rate of degradation of the Ser/Thr to Ala mutant PIF1 was significantly reduced compared with wild-type PIF1 in transgenic plants. In addition, hypocotyl lengths of the mutant PIF1 transgenic plants were much longer than the wild-type PIF1 transgenic plants under light, suggesting that the mutant PIF1 is suppressing photomorphogenesis. Taken together, these data suggest that CK2-mediated phosphorylation enhances the light-induced degradation of PIF1 to promote photomorphogenesis.


Biochemistry | 2003

Reactions of trans-3-chloroacrylic acid dehalogenase with acetylene substrates: consequences of and evidence for a hydration reaction.

Susan C. Wang; Maria D. Person; William H. Johnson; Christian P. Whitman

Various soil bacteria use 1,3-dichloropropene, a component of the commercially available fumigants Shell D-D and Telone II, as a sole source of carbon and energy. One enzyme involved in the catabolism of 1,3-dichloropropene is trans-3-chloroacrylic acid dehalogenase (CaaD), which converts the trans-isomers of 3-bromo- and 3-chloroacrylate to malonate semialdehyde. Sequence analysis suggested a relationship between the heterohexameric CaaD and the bacterial isomerase, 4-oxalocrotonate tautomerase (4-OT), thereby distinguishing CaaD from a number of dehalogenases whose mechanisms proceed through an alkyl- or aryl-enzyme intermediate. In this study, the genes for the alpha- and beta-subunits of CaaD have been synthesized using a polymerase chain reaction-based strategy, cloned into separate plasmids, and the proteins expressed and purified as the functional heterohexamer. Subsequently, the product of the reaction was confirmed to be malonate semialdehyde by (1)H and (13)C NMR spectroscopy, and kinetic constants were determined using a UV spectrophotometric assay. In view of the proposed hydrolytic nature of the CaaD-catalyzed reaction, three acetylene compounds were investigated as substrates for the enzyme. One compound, 2-oxo-3-pentynoate, a potent active site-directed irreversible inhibitor of 4-OT, is a substrate for CaaD, and was processed to acetopyruvate with kinetic constants similar to those determined for the trans-isomers of 3-bromo- and 3-chloroacrylate. The remaining two compounds, 3-bromo- and 3-chloropropiolic acid, were transformed into potent irreversible inhibitors of CaaD. The inactivation observed for 3-bromopropiolic acid is due to the covalent modification of Pro-1 of the beta-subunit. The results provide evidence for a hydratase activity and set the stage to use the 3-halopropiolic acids as ligands in inactivated CaaD complexes that can be studied by X-ray crystallography.


Journal of Biological Chemistry | 2009

Phosphorylation of plant translation initiation factors by CK2 enhances the in vitro interaction of multifactor complex components

Michael D. Dennis; Maria D. Person; Karen S. Browning

CK2 phosphorylates a wide variety of substrates, including translation initiation factors. A mass spectrometric approach was used to identify residues phosphorylated by CK2, which may regulate the activity of initiation factors during the translation initiation process in plants. CK2 in vitro phosphorylation sites were identified in wheat and Arabidopsis thaliana eIF2α, eIF2β, eIF5, and wheat eIF3c. Native wheat eIF5 and eIF2α were found to have phosphorylation sites that corresponded to some of the in vitro CK2 phosphorylation sites. A large number of the CK2 sites identified in this study are in conserved binding domains that have been implicated in the yeast multifactor complex (eIF1-eIF3-eIF5-eIF2-GTP-Met-tRNAiMet). This is the first study to demonstrate that plant initiation factors are capable of forming a multifactor complex in vitro. In addition, the interaction of factors within these complexes was enhanced both in vitro and in native extracts by phosphorylation of one or more initiation factors by CK2. The importance of CK2 phosphorylation of eIF5 was evaluated by site-directed mutagenesis of eIF5 to remove CK2 phosphorylation sites. Removal of CK2 phosphorylation sites from eIF5 inhibits the CK2-mediated increase in eIF5 interaction with eIF1 and eIF3c in pulldown assays and reduces the eIF5-mediated stimulation of translation initiation in vitro. These results suggest a functional role for CK2 phosphorylation in the initiation of plant translation.


Nature Communications | 2013

Human DNA helicase HELQ participates in DNA interstrand crosslink tolerance with ATR and RAD51 paralogs

Kei Ichi Takata; Shelley Reh; Junya Tomida; Maria D. Person; Richard D. Wood

Mammalian HELQ is a 3′–5′ DNA helicase with strand displacement activity. Here we show that HELQ participates in a pathway of resistance to DNA interstrand crosslinks (ICLs). Genetic disruption of HELQ in human cells enhances cellular sensitivity and chromosome radial formation by the ICL-inducing agent mitomycin C (MMC). A significant fraction of MMC sensitivity is independent of the Fanconi anaemia pathway. Sister chromatid exchange frequency and sensitivity to UV radiation or topoisomerase inhibitors is unaltered. Proteomic analysis reveals that HELQ is associated with the RAD51 paralogs RAD51B/C/D and XRCC2, and with the DNA damage-responsive kinase ATR. After treatment with MMC, reduced phosphorylation of the ATR substrate CHK1 occurs in HELQ-knockout cells, and accumulation of G2/M cells is reduced. The results indicate that HELQ operates in an arm of DNA repair and signalling in response to ICL. Further, the association with RAD51 paralogs suggests HELQ as a candidate ovarian cancer gene.

Collaboration


Dive into the Maria D. Person's collaboration.

Top Co-Authors

Avatar

Jianjun Shen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sean C. Hensley

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

John DiGiovanni

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika L. Abel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Herng Hsiang Lo

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Joe M. Angel

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelina Traner

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge