Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Daniela Candia Carnevali is active.

Publication


Featured researches published by Maria Daniela Candia Carnevali.


The Journal of Comparative Neurology | 2003

Novel, secondary sensory cell organ in ascidians: In search of the ancestor of the vertebrate lateral line

Paolo Burighel; Nancy J. Lane; Gasparini Fabio; Tiozzo Netti Stefano; Giovanna Zaniolo; Maria Daniela Candia Carnevali; Lucia Manni

A new mechanoreceptor organ, the “coronal organ,” located in the oral siphon, is described by light and electron microscopy in the colonial ascidians Botryllus schlosseri and Botrylloides violaceus. It is composed of a line of sensory cells (hair cells), accompanied by supporting cells, that runs continuously along the margin of the velum and tentacles of the siphon. These hair cells resemble those of the vertebrate lateral line or, in general, the acoustico‐lateralis system, because they bear a single cilium, located centrally or eccentrically to a hair bundle of numerous stereovilli. In contrast to other sensory cells of ascidians, the coronal hair cells are secondary sensory cells, since they lack axonal processes directed towards the cerebral ganglion. Moreover, at their base they form synapses with nerve fibers, most of which exhibit acetylcholinesterase activity. The absence of axonal extensions was confirmed by experiments with lipophilic dyes. Different kinds of synapses were recognized: usually, each hair cell forms a few afferent synapses with dendrites of neurons located in the ganglion; efferent synapses, both axo‐somatic (between an axon coming from the ganglion and the hair cell) and axo‐dendritic (between an axon coming from the ganglion and an afferent fiber) were occasionally found. The presence of secondary sensory cells in ascidians is discussed in relation to the evolution of sensory cells and placodes in vertebrates. It is proposed that the coronal organ in urochordates is homologous to the vertebrate acoustico‐lateralis system. J. Comp. Neurol. 461:236–249, 2003.


PLOS ONE | 2011

New Insights into Mutable Collagenous Tissue: Correlations between the Microstructure and Mechanical State of a Sea-Urchin Ligament

Ana R. Ribeiro; Alice Barbaglio; Cristiano Di Benedetto; Cristina Ribeiro; Iain C. Wilkie; Maria Daniela Candia Carnevali; Mário A. Barbosa

The mutable collagenous tissue (MCT) of echinoderms has the ability to undergo rapid and reversible changes in passive mechanical properties that are initiated and modulated by the nervous system. Since the mechanism of MCT mutability is poorly understood, the aim of this work was to provide a detailed morphological analysis of a typical mutable collagenous structure in its different mechanical states. The model studied was the compass depressor ligament (CDL) of a sea urchin (Paracentrotus lividus), which was characterized in different functional states mimicking MCT mutability. Transmission electron microscopy, histochemistry, cryo-scanning electron microscopy, focused ion beam/scanning electron microscopy, and field emission gun-environmental scanning electron microscopy were used to visualize CDLs at the micro- and nano-scales. This investigation has revealed previously unreported differences in both extracellular and cellular constituents, expanding the current knowledge of the relationship between the organization of the CDL and its mechanical state. Scanning electron microscopies in particular provided a three-dimensional overview of CDL architecture at the micro- and nano-scales, and clarified the micro-organization of the ECM components that are involved in mutability. Further evidence that the juxtaligamental cells are the effectors of these changes in mechanical properties was provided by a correlation between their cytology and the tensile state of the CDLs.


Central European Journal of Biology | 2006

Visceral regeneration in the crinoid Antedon mediterranea: basic mechanisms, tissues and cells involved in gut regrowth

Daniela Mozzi; Igor Yu Dolmatov; Francesco Bonasoro; Maria Daniela Candia Carnevali

Crinoids are able to regenerate completely many body parts, namely arms, pinnules, cirri, and also viscera, including the whole gut, lost after self-induced or traumatic mutilations. In contrast to the regenerative processes related to external appendages, those related to internal organs have been poorly investigated. In order to provide a comprehensive view of these processes, and of their main events, timing and mechanisms, the present work is exploring visceral regeneration in the feather star Antedon meditteranea. The histological and cellular aspects of visceral regeneration were monitored at predetermined times (from 24 hours to 3 weeks post evisceration) using microscopy and immunocytochemistry. The overall regeneration process can be divided into three main phases, leading in 3 weeks to the reconstruction of a complete functional gut. After a brief wound healing phase, new tissues and organs develop as a result of extensive cell migration and transdifferentiation. The cells involved in these processes are mainly coelothelial cells, which after trans-differentiating into progenitor cells form clusters of enterocytic precursors. The advanced phase is then characterized by the growth and differentiation of the gut rudiment. In general, our results confirm the striking potential for repair (wound healing) and regeneration displayed by crinoids at the organ, tissue and cellular levels.


Marine Drugs | 2014

Production, Characterization and Biocompatibility of Marine Collagen Matrices from an Alternative and Sustainable Source: The Sea Urchin Paracentrotus lividus

Cristiano Di Benedetto; Alice Barbaglio; Tiziana Martinello; Valentina Alongi; Dario Fassini; Emanuele Cullorà; Marco Vincenzo Patruno; Francesco Bonasoro; Mário A. Barbosa; Maria Daniela Candia Carnevali; Michela Sugni

Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30–400 nm and mesh < 2 μm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices.


PLOS ONE | 2012

Matrix Metalloproteinases in a Sea Urchin Ligament with Adaptable Mechanical Properties

Ana R. Ribeiro; Alice Barbaglio; Maria José Oliveira; Cristina Ribeiro; Iain C. Wilkie; Maria Daniela Candia Carnevali; Mário A. Barbosa

Mutable collagenous tissues (MCTs) of echinoderms show reversible changes in tensile properties (mutability) that are initiated and modulated by the nervous system via the activities of cells known as juxtaligamental cells. The molecular mechanism underpinning this mechanical adaptability has still to be elucidated. Adaptable connective tissues are also present in mammals, most notably in the uterine cervix, in which changes in stiffness result partly from changes in the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). There have been no attempts to assess the potential involvement of MMPs in the echinoderm mutability phenomenon, apart from studies dealing with a process whose relationship to the latter is uncertain. In this investigation we used the compass depressor ligaments (CDLs) of the sea-urchin Paracentrotus lividus. The effect of a synthetic MMP inhibitor - galardin - on the biomechanical properties of CDLs in different mechanical states (“standard”, “compliant” and “stiff”) was evaluated by dynamic mechanical analysis, and the presence of MMPs in normal and galardin-treated CDLs was determined semi-quantitatively by gelatin zymography. Galardin reversibly increased the stiffness and storage modulus of CDLs in all three states, although its effect was significantly lower in stiff than in standard or compliant CDLs. Gelatin zymography revealed a progressive increase in total gelatinolytic activity between the compliant, standard and stiff states, which was possibly due primarily to higher molecular weight components resulting from the inhibition and degradation of MMPs. Galardin caused no change in the gelatinolytic activity of stiff CDLs, a pronounced and statistically significant reduction in that of standard CDLs, and a pronounced, but not statistically significant, reduction in that of compliant CDLs. Our results provide evidence that MMPs may contribute to the variable tensility of the CDLs, in the light of which we provide an updated hypothesis for the regulatory mechanism controlling MCT mutability.


Marine Environmental Research | 2014

Comparing dynamic connective tissue in echinoderms and sponges: morphological and mechanical aspects and environmental sensitivity.

Michela Sugni; Dario Fassini; Alice Barbaglio; Anna Biressi; Cristiano Di Benedetto; Serena Tricarico; Francesco Bonasoro; Iain C. Wilkie; Maria Daniela Candia Carnevali

Echinoderms and sponges share a unique feature that helps them face predators and other environmental pressures. They both possess collagenous tissues with adaptable viscoelastic properties. In terms of morphology these structures are typical connective tissues containing collagen fibrils, fibroblast- and fibroclast-like cells, as well as unusual components such as, in echinoderms, neurosecretory-like cells that receive motor innervation. The mechanisms underpinning the adaptability of these tissues are not completely understood. Biomechanical changes can lead to an abrupt increase in stiffness (increasing protection against predation) or to the detachment of body parts (in response to a predator or to adverse environmental conditions) that are regenerated. Apart from these advantages, the responsiveness of echinoderm and sponge collagenous tissues to ionic composition and temperature makes them potentially vulnerable to global environmental changes.


Journal of the Marine Biological Association of the United Kingdom | 2012

Exploring endocrine regulation of sea urchin reproductive biology : effects of 17ß-oestradiol

Michela Sugni; Daphne Motta; Paolo Tremolada; Maria Daniela Candia Carnevali

Although several authors have suggested a plausible involvement of steroids in the reproductive biology of echinoderms, their definitive role is still poorly understood. In this paper we focused on oestradiol (E 2 ), whose presence and variations were previously revealed in different echinoderm tissues. The aim of this investigation was to provide further information on the scarcely known role of this hormone in the reproductive biology of sea urchins. We injected two different concentrations ( 5 ng ml ―1 and 50 ng ml ―1 ) of 17β-oestradiol into specimens of the common Paracentrotus lividus for 10 weeks. The E 2 treatment did not influence the maturation stage of the gonads and the development of the gametes; it caused a slight decrease in the gonad index and an increase in lipid content. Our present results suggest that E 2 could have a function different from that reported for vertebrates and suggested for other echinoderms such as asteroids.


Cell and Tissue Research | 2017

An integrated view of asteroid regeneration: tissues, cells and molecules

Yousra Ben Khadra; Michela Sugni; C. Ferrario; Francesco Bonasoro; Ana V. Coelho; Pedro Martinez; Maria Daniela Candia Carnevali

The potential for repairing and replacing cells, tissues, organs and body parts is considered a primitive attribute of life shared by all the organisms, even though it may be expressed to a different extent and which is essential for the survival of both individual and whole species. The ability to regenerate is particularly evident and widespread within invertebrates. In spite of the wide availability of experimental models, regeneration has been comprehensively explored in only a few animal systems (i.e., hydrozoans, planarians, urodeles) leaving many other animal groups unexplored. The regenerative potential finds its maximum expression in echinoderms. Among echinoderm classes, asteroids offer an impressive range of experimental models in which to study arm regeneration at different levels. Many studies have been recently carried out in order to understand the regenerative mechanisms in asteroids and the overall morphological processes have been well documented in different starfish species, such as Asterias rubens, Leptasterias hexactis and Echinaster sepositus. In contrast, very little is known about the molecular mechanisms that control regeneration development and patterning in these models. The origin and the fate of cells involved in the regenerative process remain a matter of debate and clear insights will require the use of complementary molecular and proteomic approaches to study this problem. Here, we review the current knowledge regarding the cellular, proteomic and molecular aspects of asteroid regeneration.


Cell and Tissue Research | 2014

Echinoderm regeneration: an in vitro approach using the crinoid Antedon mediterranea.

Cristiano Di Benedetto; Lorenzo Parma; Alice Barbaglio; Michela Sugni; Francesco Bonasoro; Maria Daniela Candia Carnevali

Among echinoderms, crinoids are well known for their remarkable regenerative potential. Regeneration depends mainly on progenitor cells (undifferentiated or differentiated), which migrate and proliferate in the lesion site. The crucial role of the “progenitor” elements involved in the regenerative processes, in terms of cell recruitment, sources, and fate, is a central problem in view of its topical interest and biological implications. The spectacular regenerative potential of crinoids is used to replace lost internal and external organs. In particular, the process of arm regeneration in the feather star Antedon mediterranea is the regeneration model most extensively explored to date. We have addressed the morphological and functional characterization of the cell phenotypes responsible for the arm regenerative processes by using an in vitro approach. This represents the first successful attempt to culture cells involved in crinoid regeneration. A comparison of these results with others from previous in vivo investigations confirms the diverse cell types contributing to regeneration and underscores their involvement in migration, proliferation, and dedifferentiation processes.


Developmental Biology | 2018

Fundamental aspects of arm repair phase in two echinoderm models

C. Ferrario; Yousra Ben Khadra; Anna Czarkwiani; Anne Zakrzewski; Pedro Martinez; Graziano Colombo; Francesco Bonasoro; Maria Daniela Candia Carnevali; Paola Oliveri; Michela Sugni

Regeneration is a post-embryonic developmental process that ensures complete morphological and functional restoration of lost body parts. The repair phase is a key step for the effectiveness of the subsequent regenerative process: in vertebrates, efficient re-epithelialisation, rapid inflammatory/immune response and post-injury tissue remodelling are fundamental aspects for the success of this phase, their impairment leading to an inhibition or total prevention of regeneration. Among deuterostomes, echinoderms display a unique combination of striking regenerative abilities and diversity of useful experimental models, although still largely unexplored. Therefore, the brittle star Amphiura filiformis and the starfish Echinaster sepositus were here used to comparatively investigate the main repair phase events after injury as well as the presence and expression of immune system and extracellular matrix (i.e. collagen) molecules using both microscopy and molecular tools. Our results showed that emergency reaction and re-epithelialisation are similar in both echinoderm models, being faster and more effective than in mammals. Moreover, in comparison to the latter, both echinoderms showed delayed and less abundant collagen deposition at the wound site (absence of fibrosis). The gene expression patterns of molecules related to the immune response, such as Ese-fib-like (starfishes) and Afi-ficolin (brittle stars), were described for the first time during echinoderm regeneration providing promising starting points to investigate the immune system role in these regeneration models. Overall, the similarities in repair events and timing within the echinoderms and the differences with what has been reported in mammals suggest that effective repair processes in echinoderms play an important role for their subsequent ability to regenerate. Targeted molecular and functional analyses will shed light on the evolution of these abilities in the deuterostomian lineage.

Collaboration


Dive into the Maria Daniela Candia Carnevali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain C. Wilkie

Glasgow Caledonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge