Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María de Toro is active.

Publication


Featured researches published by María de Toro.


PLOS Genetics | 2014

Dissemination of Cephalosporin Resistance Genes between Escherichia coli Strains from Farm Animals and Humans by Specific Plasmid Lineages

Mark de Been; Val F. Lanza; María de Toro; J. Scharringa; Wietske Dohmen; Yu Du; Juan Hu; Ying Lei; Ning Li; Ave Tooming-Klunderud; Dick Heederik; Ad C. Fluit; Marc J. M. Bonten; Rob J. L. Willems; Fernando de la Cruz; Willem van Schaik

Third-generation cephalosporins are a class of β-lactam antibiotics that are often used for the treatment of human infections caused by Gram-negative bacteria, especially Escherichia coli. Worryingly, the incidence of human infections caused by third-generation cephalosporin-resistant E. coli is increasing worldwide. Recent studies have suggested that these E. coli strains, and their antibiotic resistance genes, can spread from food-producing animals, via the food-chain, to humans. However, these studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these strains. We therefore used whole-genome sequencing (WGS) to study the relatedness of cephalosporin-resistant E. coli from humans, chicken meat, poultry and pigs. One strain collection included pairs of human and poultry-associated strains that had previously been considered to be identical based on Multi-Locus Sequence Typing, plasmid typing and antibiotic resistance gene sequencing. The second collection included isolates from farmers and their pigs. WGS analysis revealed considerable heterogeneity between human and poultry-associated isolates. The most closely related pairs of strains from both sources carried 1263 Single-Nucleotide Polymorphisms (SNPs) per Mbp core genome. In contrast, epidemiologically linked strains from humans and pigs differed by only 1.8 SNPs per Mbp core genome. WGS-based plasmid reconstructions revealed three distinct plasmid lineages (IncI1- and IncK-type) that carried cephalosporin resistance genes of the Extended-Spectrum Beta-Lactamase (ESBL)- and AmpC-types. The plasmid backbones within each lineage were virtually identical and were shared by genetically unrelated human and animal isolates. Plasmid reconstructions from short-read sequencing data were validated by long-read DNA sequencing for two strains. Our findings failed to demonstrate evidence for recent clonal transmission of cephalosporin-resistant E. coli strains from poultry to humans, as has been suggested based on traditional, low-resolution typing methods. Instead, our data suggest that cephalosporin resistance genes are mainly disseminated in animals and humans via distinct plasmids.


PLOS Genetics | 2014

Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

Val F. Lanza; María de Toro; M. Pilar Garcillán-Barcia; Azucena Mora; Jorge Blanco; Teresa M. Coque; Fernando de la Cruz

Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.


Frontiers in Microbiology | 2016

Carriage of Extended-Spectrum Beta-Lactamase-Plasmids Does Not Reduce Fitness but Enhances Virulence in Some Strains of Pandemic E. coli Lineages

Katharina Schaufler; Torsten Semmler; Derek Pickard; María de Toro; Fernando de la Cruz; Lothar H. Wieler; Christa Ewers; Sebastian Guenther

Pathogenic ESBL-producing E. coli lineages occur frequently worldwide, not only in a human health context but in animals and the environment, also in settings with low antimicrobial pressures. This study investigated the fitness costs of ESBL-plasmids and their influence on chromosomally encoded features associated with virulence, such as those involved in the planktonic and sessile behaviors of ST131 and ST648 E. coli. ESBL-plasmid-carrying wild-type E. coli strains, their corresponding ESBL-plasmid-“cured” variants (PCV), and complementary ESBL-carrying transformants were comparatively analyzed using growth curves, Omnilog® phenotype microarray (PM) assays, macrocolony and biofilm formation, swimming motility, and RNA sequence analysis. Growth curves and PM results pointed toward similar growth and metabolic behaviors among the strains. Phenotypic differences in some strains were detected, including enhanced curli fimbriae and/or cellulose production as well as a reduced swimming capacity of some ESBL-carrying strains, as compared to their respective PCVs. RNA sequencing mostly confirmed the phenotypic results, suggesting that the chromosomally encoded csgD pathway is a key factor involved. These results contradict the hypothesis that ESBL-plasmid-carriage leads to a fitness loss in ESBL-carrying strains. Instead, the results indicate an influence of some ESBL-plasmids on chromosomally encoded features associated with virulence in some E. coli strains. In conclusion, apart from antibiotic resistance selective advantages, ESBL-plasmid-carriage may also lead to enhanced virulence or adaption to specific habitats in some strains of pandemic ESBL-producing E. coli lineages.


Microbiology spectrum | 2014

Plasmid diversity and adaptation analyzed by massive sequencing of Escherichia coli plasmids

María de Toro; M. Pilar Garcillán-Barcia; Fernando de la Cruz

Whole-genome sequencing is revolutionizing the analysis of bacterial genomes. It leads to a massive increase in the amount of available data to be analyzed. Bacterial genomes are usually composed of one main chromosome and a number of accessory chromosomes, called plasmids. A recently developed methodology called PLACNET (for plasmid constellation networks) allows the reconstruction of the plasmids of a given genome. Thus, it opens an avenue for plasmidome analysis on a global scale. This work reviews our knowledge of the genetic determinants for plasmid propagation (conjugation and related functions), their diversity, and their prevalence in the variety of plasmids found by whole-genome sequencing. It focuses on the results obtained from a collection of 255 Escherichia coli plasmids reconstructed by PLACNET. The plasmids found in E. coli represent a nonaleatory subset of the plasmids found in proteobacteria. Potential reasons for the prevalence of some specific plasmid groups will be discussed and, more importantly, additional questions will be posed.


International Journal of Medical Microbiology | 2014

Molecular epidemiology and virulence of Escherichia coli O16: H5-ST131: Comparison with H30 and H30-Rx subclones of O25b: H4-ST131

Ghizlane Dahbi; Azucena Mora; Rosalía Mamani; Cecilia López; María del Pilar León-Castro Alonso; Juan Marzoa; Miguel Blanco; Alexandra Herrera; Susana Viso; Fernando García-Garrote; Veronika Tchesnokova; Mariya Billig; Fernando de la Cruz; María de Toro; Juan José González-López; G. Prats; Fernando Chaves; Luis Martínez-Martínez; Lorena López-Cerezo; Erick Denamur; Jorge Blanco

The present study was carried out to evaluate the prevalence of the clonal subgroup O16:H5-ST131 and the H30 and H30-Rx subclones among E. coli isolates causing extraintestinal infections and to know their virulence potential. The ST131 clonal group accounted for 490 (16%) of the 2995 isolates obtained from clinical samples in five Spanish hospitals during the study period (2005-2012). Among those 490 ST131 isolates, 456 belonged to serotype O25b:H4, 27 to O16:H5 and seven were O-non-typeable:H4 (ONT:H4). All 27 O16:H5 isolates showed fimH41, whereas fimH30 and fimH22 alleles were the most frequently detected among O25b:H4 isolates. The majority (381/490; 78%) of ST131 isolates belonged to H30 subclone, and 302 of 381 (79%) H30 isolates belonged to the H30-Rx subclone. Of the 27 O16:H5 isolates, 48% produced CTX-M-14; however, none produced CTX-M-15. In contrast, 46% of O25b:H4 isolates produced CTX-M-15 while only 2% produced CTX-M-14. More than a half of the O16:H5 isolates (56%) showed the ExPEC status which was significantly more prevalent within O25b:H4 isolates (81%) (P<0.01), especially among H30-Rx (97%) isolates. In the present study, a modified virotype scheme was applied within which approximately half (52%) of the O16:H5 isolates showed the C1 specific virotype. Despite their low virulence-gene score (mean of virulence genes 6.4 versus 8.5 in O25b:H4 isolates), six out of the 10 O16:H5 isolates assayed showed high virulence in the mouse model of sepsis (killed 90-100% of mice challenged). Furthermore, four O16:H5 isolates of virotypes A and C1, carrying K2 variant of group II capsule, showed lethality at 24h. Thus, certain O16:H5 fimH41 isolates show a similar in vivo virulence to that reported with the highly virulent O25b:H4 H30-Rx isolates (Mora et al., PLOS ONE 2014, e87025), supporting their potential virulence for humans.


Frontiers in Molecular Biosciences | 2016

Comparative Genomics of the Conjugation Region of F-like Plasmids: Five Shades of F

Raul Fernandez-Lopez; María de Toro; Gabriel Moncalián; M. Pilar Garcillán-Barcia; Fernando de la Cruz

The F plasmid is the foremost representative of a large group of conjugative plasmids, prevalent in Escherichia coli, and widely distributed among the Enterobacteriaceae. These plasmids are of clinical relevance, given their frequent association with virulence determinants, colicins, and antibiotic resistance genes. Originally defined by their sensitivity to certain male-specific phages, IncF plasmids share a conserved conjugative system and regulatory circuits. In order to determine whether the genetic architecture and regulation circuits are preserved among these plasmids, we analyzed the natural diversity of F-like plasmids. Using the relaxase as a phylogenetic marker, we identified 256 plasmids belonging to the IncF/ MOBF12group, present as complete DNA sequences in the NCBI database. By comparative genomics, we identified five major groups of F-like plasmids. Each shows a particular operon structure and alternate regulatory systems. Results show that the IncF/MOBF12 conjugation gene cluster conforms a diverse and ancient group, which evolved alternative regulatory schemes in its adaptation to different environments and bacterial hosts.


International Journal of Antimicrobial Agents | 2013

Characterisation of plasmids implicated in the mobilisation of extended-spectrum and AmpC β-lactamase genes in clinical Salmonella enterica isolates and temporal stability of the resistance genotype.

María de Toro; Patricia García; Irene Rodríguez; Beatriz Rojo-Bezares; Reiner Helmuth; Yolanda Sáenz; M. Rosario Rodicio; Beatriz Guerra; Carmen Torres

Plasmids implicated in the mobilisation of β-lactamase genes in extended-spectrum β-lactamase (ESBL)- and AmpC-producing Salmonella enterica isolates recovered from three Spanish hospitals were characterised. The temporal stability of these plasmids and of the resistance phenotype without antimicrobial pressure was also assessed in the laboratory setting. The resistance determinants and their genetic environments were characterised by PCR sequencing, and their genomic location was analysed by S1 nuclease pulsed-field gel electrophoresis (PFGE) and I-CeuI PFGE, followed by Southern blot hybridisation. The 11 S. enterica studied strains carried blaCTX-M-9 (serovar Virchow, 2 isolates), blaCTX-M-10 (Virchow, 2), blaCTX-M-14 (Enteritidis, 1), blaCTX-M-15 (Gnesta and S. enterica group C, 2), blaSHV-2 (Livingstone, 1), blaSHV-12 (Enteritidis, 1) and blaCMY-2 (Bredeney, 2). The ISEcp1-blaCTX-M-14-IS903 and ISEcp1-blaCTX-M-15-orf477 genetic structures were detected. IncI1 and IncA/C plasmids carried blaCTX-M-14, blaCTX-M-15, blaSHV-2, blaSHV-12 and blaCMY-2 genes. blaCTX-M-9 included in an In60 complex integron and blaCTX-M-10 linked to a phage-related element were found in non-typeable plasmids. Conjugation and temporal stability experiments were performed in vitro through daily passages (100 days) in the absence of antimicrobial pressure. In the stability experiments, 5 of the 11 tested isolates lost the ESBL or AmpC plasmidic genes and this was associated with concomitant loss of the whole or partial plasmid. In conclusion, successful plasmids belonging to different Inc groups mobilise ESBL- and AmpC-encoding genes in S. enterica. Loss of ESBL/AmpC genes in the absence of antimicrobial pressure might explain the low prevalence of these β-lactamases among Salmonella isolates.


Vector-borne and Zoonotic Diseases | 2012

Phenotypic and Genotypic Characterization of Salmonella enterica Recovered from Poultry Meat in Tunisia and Identification of New Genetic Traits

Leila Soufi; Yolanda Sáenz; María de Toro; Mohamed Salah Abbassi; Beatriz Rojo-Bezares; Laura Vinué; Ons Bouchami; A. Touati; Assia Ben Hassen; Salah Hammami; Carmen Torres

Thirty-seven Salmonella enterica isolates obtained from poultry meat in Tunisia were included in this study for characterization of antibiotic resistance mechanisms. High percentages of resistance were detected to ampicillin, sulfonamides, tetracycline, nalidixic acid, and streptomycin (32.4%-89.2%), and lower percentages to amoxicillin-clavulanic acid, kanamycin, amikacin, trimethoprim-sulfamethoxazol, and chloramphenicol (2.7%-18.9%). All strains showed susceptibility to ceftazidime, cefotaxime, gentamicin, and ciprofloxacin. Class 1 integrons were detected in 30% of Salmonella isolates, and four different gene cassette arrangements were detected, including genes implicated in resistance to aminoglycosides (aadA1 and aadA2) and trimethoprim (dfrA1). Four different Pc variants (PcW, PcH1, PcH1(TTN-10), PcW(TGN-10)) with inactive P2 have been found among these isolates. Integron-positive isolates were ascribed to eight different serotypes. A Salmonella Schwarzengrund isolate harbored a new class 1 integron containing the qacH-dfrA1b-aadA1b-catB2 gene cassette arrangement, with the very unusual PcH1(TTN-10) promoter, which has been registered in GenBank (accession no. HQ874651). Different plasmid replicon types were demonstrated among integron-positive isolates: IncI1 (8 isolates), IncN (8), IncP (2), IncFIB (2), and IncFII (2). Ten different pulsed-field gel electrophoresis profiles were detected among the 11 integron-positive isolates and 8 different sequence types were identified by multilocus sequence typing, one of them (registered as ST867) was new, detected in 3 Salmonella Zanzibar isolates. A high diversity of clones is observed among poultry Salmonella isolates and a high proportion of them show a multiresistant phenotype with very diverse mobile genetic structures that could be implicated in bacterial dissemination in different environments.


Enfermedades Infecciosas Y Microbiologia Clinica | 2014

Resistencia a antibióticos y factores de virulencia en aislados clínicos de Salmonella enterica

María de Toro; Cristina Seral; Beatriz Rojo-Bezares; Carmen Torres; F. Javier Castillo; Yolanda Sáenz

INTRODUCTION The increase of Salmonella enterica isolates multi-resistant to different antibiotics, including β-lactams and fluoroquinolones, is a problem of clinical importance. The dissemination of Salmonella Typhimurium resistant to ampicillin (AMP)-chloramphenicol (CHL)-streptomycin (STR)-sulphonamides and (SUL)-tetracycline (TET), that harbour the Salmonella Genomic Island type 1 (SGI1), and the acquisition of transferable genetic material have favoured the multi-resistance in this genus. METHODS A total of 114 clinical S.enterica isolates were studied (period 2009-2010). The susceptibility to 20 antibiotics was determined by disc diffusion and microdilution. The antimicrobial resistance mechanisms and the integrons were analysed by PCR, and sequencing in the AMP(R) isolates. In all the blaPSE-1-positive isolates, the clonal relationship was determined by PFGE, as well as the presence of SGI1 and 29 virulence genes by PCR. RESULTS Eighteen different serotypes were found among the 114 isolates studied, Typhimurium (61%) and Enteritidis (16%) being the most prevalent. High percentages of resistance to SUL (68%), TET (58%), AMP (55%) and STR (46%) were observed. The great majority (92%) of 63 AMP(R) isolates were multi-resistant, with the AMP-STR-TET-SUL phenotype (19 isolates) being the most frequent one and associated with the blaTEM-1b+strA-strB+tet(B)+sul2 genotype. Class 1 integrons (7 different structures) were observed in 48% AMP(R) isolates, highlighting the blaOXA-1+aadA1 structure (8 isolates), one empty integron and non-classical integrons (5 isolates). The blaPSE-1 gene was detected inside the classical SGI1 structure in 13 clonally-related isolates that showed the same virulence profile. CONCLUSIONS The high percentage of multi-resistant S.enterica isolates, especially associated to S.Typhimurium, to the AMP, STR, TET and SUL phenotype, and to the blaTEM-1b+strA-strB+tet(B)+sul2 genotype, shows an important risk of possible failures in the treatment of serious infections caused by this serotype.


Journal of Medical Microbiology | 2011

A novel class 1 integron array carrying blaVIM-2 genes and a new insertion sequence in a Pseudomonas aeruginosa strain isolated from a Spanish hospital

Beatriz Rojo-Bezares; Vanesa Estepa; María de Toro; Esther Undabeitia; Inés Olarte; Carmen Torres; Yolanda Sáenz

Pseudomonas aeruginosa is a pathogen commonly implicated in nosocomial infections. Carbapenems are an effective treatment option, but P. aeruginosa resistant to these agents are increasingly reported. The zinc-dependent metallo-blactamases (MBLs) are one of the most clinically important enzymes that hydrolyse carbapenems, penicillins and extended-spectrum cephalosporins, but not aztreonam (Walsh et al., 2005). Their activity is inhibited by the effect of metal chelators such as EDTA. The MBLs most frequently detected worldwide are the IMP and VIM types, which have been reported within genetic elements such as integrons (Walsh et al., 2005; Partridge et al., 2009). Integrons have the ability to capture, integrate and express gene cassettes involved in the resistance to different antimicrobial families (e.g. b-lactams, carbapenems and aminoglycosides) (Partridge et al., 2009). This facilitates the dissemination and co-selection of multiresistant P. aeruginosa strains and limits the therapeutic options (Bonomo & Szabo, 2006).

Collaboration


Dive into the María de Toro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernando de la Cruz

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar

Fernando García-Carreño

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Val F. Lanza

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Pilar Garcillán-Barcia

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Gilberto Igrejas

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

Patrícia Poeta

University of Trás-os-Montes and Alto Douro

View shared research outputs
Researchain Logo
Decentralizing Knowledge