María del Carmen Casado Muñoz
University of Jaén
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María del Carmen Casado Muñoz.
Food Research International | 2015
Hikmate Abriouel; María del Carmen Casado Muñoz; Leyre Lavilla Lerma; Beatriz Pérez Montoro; Wilhelm Bockelmann; Rohtraud Pichner; Jan Kabisch; Gyu-Sung Cho; Charles M. A. P. Franz; Antonio Gálvez; Nabil Benomar
Abstract Bacteria belonging to the genus Lactobacillus are used as starter cultures or that develop naturally as fermenting microbiota in the production of various foods. On the detrimental side, lactobacilli may act as reservoir of antibiotic resistance genes, which can spread to commensal bacteria in humans or animals, or to food-associated pathogens. In the last decade, advances in molecular biology and in genome sequencing have provided more information on antibiotic resistances in foodborne bacteria. The aim of this review was to consider and provide an up-to-date status on phenotypic and genotypic antibiotic resistance profiles in Lactobacillus species from fermented foods and also to highlight new information on the distribution of glycopeptide and chloramphenicol resistance genes in Lactobacillus genomes. In silico screening of vanZ (glycopeptide resistance) and cat (chloramphenicol resistance)-like sequences in Lactobacillus species isolated from fermented foods revealed for the first time the occurrence of vanZ and cat genes in Lactobacillus species being highly conserved genes in the chromosome of each species, presumably non-transferable. Further studies involving genome sequences of Lactobacillus isolated from fermented foods, especially those relying on spontaneous fermentation, is crucial to increase knowledge on the potential presence and spread of antibiotic resistance genes via the food route.
Frontiers in Microbiology | 2015
Hikmate Abriouel; Leyre Lavilla Lerma; María del Carmen Casado Muñoz; Beatriz Pérez Montoro; Jan Kabisch; Rohtraud Pichner; Gyu-Sung Cho; Horst Neve; Vincenzina Fusco; Charles M. A. P. Franz; Antonio Gálvez; Nabil Benomar
Despite the use of several Weissella (W.) strains for biotechnological and probiotic purposes, certain species of this genus were found to act as opportunistic pathogens, while strains of W. ceti were recognized to be pathogenic for farmed rainbow trout. Herein, we investigated the pathogenic potential of weissellas based on in silico analyses of the 13 whole genome sequences available to date in the NCBI database. Our screening allowed us to find several virulence determinants such as collagen adhesins, aggregation substances, mucus-binding proteins, and hemolysins in some species. Moreover, we detected several antibiotic resistance-encoding genes, whose presence could increase the potential pathogenicity of some strains, but should not be regarded as an excluding trait for beneficial weissellas, as long as these genes are not present on mobile genetic elements. Thus, selection of weissellas intended to be used as starters or for biotechnological or probiotic purposes should be investigated regarding their safety aspects on a strain to strain basis, preferably also by genome sequencing, since nucleotide sequence heterogeneity in virulence and antibiotic resistance genes makes PCR-based screening unreliable for safety assessments. In this sense, the application of W. confusa and W. cibaria strains as starter cultures or as probiotics should be approached with caution, by carefully selecting strains that lack pathogenic potential.
Applied and Environmental Microbiology | 2014
Leyre Lavilla Lerma; Nabil Benomar; María del Carmen Casado Muñoz; Antonio Gálvez; Hikmate Abriouel
ABSTRACT The aim of this study was to investigate the phenotypic and genotypic antibiotic resistance profiles of pseudomonads isolated from surfaces of a goat and lamb slaughterhouse, which were representative of areas that are possible sources of meat contamination. Mesophilic (85 isolates) and psychrotrophic (37 isolates) pseudomonads identified at the species level generally were resistant to sulfamethoxazole, erythromycin, amoxicillin, ampicillin, chloramphenicol, trimethoprim, rifampin, and ceftazidime (especially mesophiles), as well as colistin and tetracycline (especially psychrotrophes). However, they generally were sensitive to ciprofloxacin, gentamicin, imipenem, and kanamycin regardless of species identity. Worryingly, in the present study, we found multidrug resistance (MDR) to up to 13 antibiotics, which was related to intrinsic and acquired resistance mechanisms. Furthermore, a link between various antimicrobial resistance genes was shown for beta-lactams and tetracycline, trimethoprim, and sulfonamides. The distribution and resistome-based analysis of MDR pseudomonads in different slaughterhouse zones indicated that the main sources of the identical or related pseudomonad strains were the animals (feet and wool) and the slaughterhouse environment, being disseminated from the beginning, or entrance environment, to the environment of the finished meat products. Those facts must be taken into consideration to avoid cross-contamination with the subsequent flow of mobile resistance determinants throughout all slaughterhouse zones and then to humans and the environment by the application of adequate practices of hygiene and disinfection measures, including those for animal wool and feet and also the entrance environment.
International Journal of Food Microbiology | 2016
María del Carmen Casado Muñoz; Nabil Benomar; Saïd Ennahar; Peter Horvatovich; Leyre Lavilla Lerma; Charles W. Knapp; Antonio Gálvez; Hikmate Abriouel
Probiotic bacterial cultures require resistance mechanisms to avoid stress-related responses under challenging environmental conditions; however, understanding these traits is required to discern their utility in fermentative food preparations, versus clinical and agricultural risk. Here, we compared the proteomic responses of Lactobacillus pentosus MP-10, a potentially probiotic lactic acid bacteria isolated from brines of naturally fermented Aloreña green table olives, exposed to sub-lethal concentrations of antibiotics (amoxicillin, chloramphenicol and tetracycline) and biocides (benzalkonium chloride and triclosan). Several genes became differentially expressed depending on antimicrobial exposure, such as the up-regulation of protein synthesis, and the down-regulation of carbohydrate metabolism and energy production. The antimicrobials appeared to have altered Lb. pentosus MP-10 physiology to achieve a gain of cellular energy for survival. For example, biocide-adapted Lb. pentosus MP-10 exhibited a down-regulated phosphocarrier protein HPr and an unexpressed oxidoreductase. However, protein synthesis was over-expressed in antibiotic- and biocide-adapted cells (ribosomal proteins and glutamyl-tRNA synthetase), possibly to compensate for damaged proteins targeted by antimicrobials. Furthermore, stress proteins, such as NADH peroxidase (Npx) and a small heat shock protein, were only over-expressed in antibiotic-adapted Lb. pentosus MP-10. Results showed that adaptation to sub-lethal concentrations of antimicrobials could be a good way to achieve desirable robustness of the probiotic Lb. pentosus MP-10 to various environmental and gastrointestinal conditions (e.g., acid and bile stresses).
Food Microbiology | 2015
Leyre Lavilla Lerma; Nabil Benomar; María del Carmen Casado Muñoz; Antonio Gálvez; Hikmate Abriouel
The aim of this study was to evaluate biocide susceptibility in mesophilic and psychrotrophic pseudomonads isolated from surfaces of a goat and lamb slaughterhouse, which was representative of the region. To determine biocide resistance in pseudomonads, we determined for the first time the epidemiological cut-off values (ECOFFs) of benzalkonium, cetrimide, chlorhexidine, hexachlorophene, P3 oxonia, polyhexamethylene guanidine hydrochloride (PHMG), topax 66 and triclosan being generally very similar in different Pseudomonas spp. with some exceptions. Thus, resistance of pseudomonads was mainly shown to triclosan, and in lesser extent to cetrimide and benzalkonium chloride depending on the species, however they were highly susceptible to industrial formulations of biocides. By means of statistical analysis, positive correlations between antibiotics, biocides and both antimicrobials in pseudomonads were detected suggesting a co- or cross resistance between different antimicrobials in goat and lamb slaughterhouse environment. Cross-resistance between biocides and antibiotics in pseudomonads were especially detected between PHMG or triclosan and different antibiotics depending on the biocide and the population type. Thus, the use of those biocides as disinfectant in slaughterhouse zones must be carefully evaluated because of the selection pressure effect of antimicrobials on the emergence of resistant bacteria which could be spread to the consumer. It is noteworthy that specific industrial formulations such as topax 66 and oxonia P3 showed few correlations with antibiotics (none or 1-2 antibiotics) which should be taken into consideration for disinfection practices in goat and lamb slaughterhouse.
PLOS ONE | 2017
Hikmate Abriouel; Beatriz Pérez Montoro; María del Carmen Casado Muñoz; Charles W. Knapp; Antonio Gálvez; Nabil Benomar
Lactobacillus pentosus MP-10, isolated from brines of naturally fermented Aloreña green table olives, exhibited high probiotic potential. The genome sequence of L. pentosus MP-10 is currently considered the largest genome among lactobacilli, highlighting the microorganism’s ecological flexibility and adaptability. Here, we analyzed the complete genome sequence for the presence of acquired antibiotic resistance and virulence determinants to understand their defense mechanisms and explore its putative safety in food. The annotated genome sequence revealed evidence of diverse mobile genetic elements, such as prophages, transposases and transposons involved in their adaptation to brine-associated niches. In-silico analysis of L. pentosus MP-10 genome sequence identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) as an immune system against foreign genetic elements, which consisted of six arrays (4–12 repeats) and eleven predicted cas genes [CRISPR1 and CRISPR2 consisted of 3 (Type II-C) and 8 (Type I) genes] with high similarity to L. pentosus KCA1. Bioinformatic analyses revealed L. pentosus MP-10 to be absent of acquired antibiotic resistance genes, and most resistance genes were related to efflux mechanisms; no virulence determinants were found in the genome. This suggests that L. pentosus MP-10 could be considered safe and with high-adaptation potential, which could facilitate its application as a starter culture and probiotic in food preparations.
Genome Announcements | 2016
Hikmate Abriouel; Beatriz Pérez Montoro; María del Carmen Casado Muñoz; Leyre Lavilla Lerma; Marina Hidalgo Pestaña; Natacha Caballero Gómez; Charles M. A. P. Franz; Antonio Gálvez; Nabil Benomar
ABSTRACT We report here a 3,698,214-bp complete genome sequence of a potential probiotic Lactobacillus pentosus strain, MP-10, isolated from brines of naturally fermented Aloreña green table olives; it is considered the largest sequenced genome among lactobacilli to date. The annotated genome sequence revealed the presence of 3,558 open reading frames (ORFs) and 87 structural RNAs.
International Journal of Food Microbiology | 2014
María del Carmen Casado Muñoz; Nabil Benomar; Leyre Lavilla Lerma; Antonio Gálvez; Hikmate Abriouel
Food Microbiology | 2014
Leyre Lavilla Lerma; Nabil Benomar; Antonio Sánchez Valenzuela; María del Carmen Casado Muñoz; Antonio Gálvez; Hikmate Abriouel
Food Microbiology | 2016
María del Carmen Casado Muñoz; Nabil Benomar; Leyre Lavilla Lerma; Charles W. Knapp; Antonio Gálvez; Hikmate Abriouel