Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria del Carmen Gimenez-Lopez is active.

Publication


Featured researches published by Maria del Carmen Gimenez-Lopez.


Nature Materials | 2011

Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube

Andrey Chuvilin; Elena Bichoutskaia; Maria del Carmen Gimenez-Lopez; Thomas W. Chamberlain; Graham A. Rance; Navaratnarajah Kuganathan; Johannes Biskupek; Ute Kaiser; Andrei N. Khlobystov

The ability to tune the properties of graphene nanoribbons (GNRs) through modification of the nanoribbons width and edge structure widens the potential applications of graphene in electronic devices. Although assembly of GNRs has been recently possible, current methods suffer from limited control of their atomic structure, or require the careful organization of precursors on atomically flat surfaces under ultra-high vacuum conditions. Here we demonstrate that a GNR can self-assemble from a random mixture of molecular precursors within a single-walled carbon nanotube, which ensures propagation of the nanoribbon in one dimension and determines its width. The sulphur-terminated dangling bonds of the GNR make these otherwise unstable nanoribbons thermodynamically viable over other forms of carbon. Electron microscopy reveals elliptical distortion of the nanotube, as well as helical twist and screw-like motion of the nanoribbon. These effects suggest novel ways of controlling the properties of these nanomaterials, such as the electronic band gap and the concentration of charge carriers.


Science | 2008

Random Tiling and Topological Defects in a Two-Dimensional Molecular Network

Matthew O. Blunt; James C. Russell; Maria del Carmen Gimenez-Lopez; Juan P. Garrahan; Xiang Lin; Martin Schröder; Neil R. Champness; Peter H. Beton

A molecular network that exhibits critical correlations in the spatial order that is characteristic of a random, entropically stabilized, rhombus tiling is described. Specifically, we report a random tiling formed in a two-dimensional molecular network of p-terphenyl-3,5,3′,5′-tetracarboxylic acid adsorbed on graphite. The network is stabilized by hexagonal junctions of three, four, five, or six molecules and may be mapped onto a rhombus tiling in which an ordered array of vertices is embedded within a nonperiodic framework with spatial fluctuations in a local order characteristic of an entropically stabilized phase. We identified a topological defect that can propagate through the network, giving rise to a local reordering of molecular tiles and thus to transitions between quasi-degenerate local minima of a complex energy landscape. We draw parallels between the molecular tiling and dynamically arrested systems, such as glasses.


Nature Chemistry | 2011

Guest-induced growth of a surface-based supramolecular bilayer

Matthew O. Blunt; James C. Russell; Maria del Carmen Gimenez-Lopez; Nassiba Taleb; Xiang Lin; Martin Schröder; Neil R. Champness; Peter H. Beton

Self-assembly of planar molecules on a surface can result in the formation of a wide variety of close-packed or porous structures. Two-dimensional porous arrays provide host sites for trapping guest species of suitable size. Here we show that a non-planar guest species (C(60)) can play a more complex role by promoting the growth of a second layer of host molecules (p-terphenyl-3,5,3″,5″-tetracarboxylic acid) above and parallel to the surface so that self-assembly is extended into the third dimension. The addition of guest molecules and the formation of the second layer are co-dependent. Adding a planar guest (coronene) can displace the C(60) and cause reversion to a monolayer arrangement. The system provides an example of a reversible transformation between a planar and a non-planar supramolecular network, an important step towards the controlled self-assembly of functional, three-dimensional, surface-based supramolecular architectures.


Chemical Communications | 2008

Directing two-dimensional molecular crystallization using guest templates

Matthew O. Blunt; Xiang Lin; Maria del Carmen Gimenez-Lopez; Martin Schröder; Neil R. Champness; Peter H. Beton

The use of a coronene guest template directs the formation of a 2D Kagomé network in preference to alternative close packed and parallel hydrogen-bonded structures of tetracarboxylic acid tectons self-assembled from solution on a graphite surface.


Nature Communications | 2010

Self-assembled aggregates formed by single-molecule magnets on a gold surface

Alex Saywell; Graziano Magnano; Christopher J. Satterley; Luís M. A. Perdigão; Andrew J. Britton; Nassiba Taleb; Maria del Carmen Gimenez-Lopez; Neil R. Champness; James N. O'Shea; Peter H. Beton

The spontaneous ordering of molecules into two-dimensional self-assembled arrays is commonly stabilized by directional intermolecular interactions that may be promoted by the addition of specific chemical side groups to a molecule. In this paper, we show that self-assembly may also be driven by anisotropic interactions that arise from the three-dimensional shape of a complex molecule. We study the molecule Mn(12)O(12)(O(2)CCH(3))(16)(H(2)O)(4) (Mn(12)(acetate)(16)), which is transferred from solution onto a Au(111) substrate held in ultrahigh vacuum using electrospray deposition (UHV-ESD). The deposited Mn(12)(acetate)(16) molecules form filamentary aggregates because of the anisotropic nature of the molecule-molecule and molecule-substrate interactions, as confirmed by molecular dynamics calculations. The fragile Mn(12)O(12) core of the Mn(12)(acetate)(16) molecule is compatible with the UHV-ESD process, which we demonstrate using near-edge X-ray adsorption fine-structure spectroscopy. UHV-ESD of Mn(12)(acetate)(16) onto a surface that has been prepatterned with a hydrogen-bonded supramolecular network provides additional control of lateral organization.


Nature Communications | 2011

Encapsulation of single-molecule magnets in carbon nanotubes

Maria del Carmen Gimenez-Lopez; Fabrizio Moro; Alessandro La Torre; Carlos J. Gómez-García; Paul D. Brown; Joris van Slageren; Andrei N. Khlobystov

Next-generation electronic, photonic or spintronic devices will be based on nanoscale functional units, such as quantum dots, isolated spin centres or single-molecule magnets. The key challenge is the coupling of the nanoscale units to the macroscopic world, which is essential for read and write purposes. Carbon nanotubes with one macroscopic and two nanoscopic dimensions provide an excellent means to achieve this coupling. Although the dimensions of nanotube internal cavities are suitable for hosting a wide range of different molecules, to our knowledge, no examples of molecular magnets inserted in nanotubes have been reported to date. Here we report the successful encapsulation of single-molecule magnets in carbon nanotubes, yielding a new type of hybrid nanostructure that combines all the key single-molecule magnet properties of the guest molecules with the functional properties of the host nanotube. The findings may pave the way to the construction of spintronic or ultrahigh-density magnetic data storage devices.


ACS Nano | 2012

Assembly, Growth, and Catalytic Activity of Gold Nanoparticles in Hollow Carbon Nanofibers

Alessandro La Torre; Maria del Carmen Gimenez-Lopez; Michael W. Fay; Graham A. Rance; William A. Solomonsz; Thomas W. Chamberlain; Paul D. Brown; Andrei N. Khlobystov

Graphitized carbon nanofibers (GNFs) act as efficient templates for the growth of gold nanoparticles (AuNPs) adsorbed on the interior (and exterior) of the tubular nanostructures. Encapsulated AuNPs are stabilized by interactions with the step-edges of the individual graphitic nanocones, of which GNFs are composed, and their size is limited to approximately 6 nm, while AuNPs adsorbed on the atomically flat graphitic surfaces of the GNF exterior continue their growth to 13 nm and beyond under the same heat treatment conditions. The corrugated structure of the GNF interior imposes a significant barrier for the migration of AuNPs, so that their growth mechanism is restricted to Ostwald ripening. Conversely, nanoparticles adsorbed on smooth GNF exterior surfaces are more likely to migrate and coalesce into larger nanoparticles, as revealed by in situ transmission electron microscopy imaging. The presence of alkyl thiol surfactant within the GNF channels changes the dynamics of the AuNP transformations, as surfactant molecules adsorbed on the surface of the AuNPs diminished the stabilization effect of the step-edges, thus allowing nanoparticles to grow until their diameters reach the internal diameter of the host nanofiber. Nanoparticles thermally evolved within the GNF channel exhibit alignment, perpendicular to the GNF axis due to interactions with the step-edges and parallel to the axis because of graphitic facets of the nanocones. Despite their small size, AuNPs in GNF possess high stability and remain unchanged at temperatures up to 300 °C in ambient atmosphere. Nanoparticles immobilized at the step-edges within GNF are shown to act as effective catalysts promoting the transformation of dimethylphenylsilane to bis(dimethylphenyl)disiloxane with a greater than 10-fold enhancement of selectivity as compared to free-standing or surface-adsorbed nanoparticles.


Nature Chemistry | 2012

Broken symmetry and the variation of critical properties in the phase behaviour of supramolecular rhombus tilings

Andrew Stannard; James C. Russell; Matthew O. Blunt; Christos Salesiotis; Maria del Carmen Gimenez-Lopez; Nassiba Taleb; Martin Schröder; Neil R. Champness; Juan P. Garrahan; Peter H. Beton

The tiling of surfaces has long attracted the attention of scientists, not only because it is intriguing intrinsically, but also as a way to control the properties of surfaces. However, although random tiling networks are studied increasingly, their degree of randomness (or partial order) has remained notoriously difficult to control, in common with other supramolecular systems. Here we show that the random organization of a two-dimensional supramolecular array of isophthalate tetracarboxylic acids varies with subtle chemical changes in the system. We quantify this variation using an order parameter and reveal a phase behaviour that is consistent with long-standing theoretical studies on random tiling. The balance between order and randomness is driven by small differences in intermolecular interaction energies, which can be related by numerical simulations to the experimentally measured order parameter. Significant variations occur with very small energy differences, which highlights the delicate balance between entropic and energetic effects in complex self-assembly processes.


Bioconjugate Chemistry | 2016

Synthesis, Characterization, and Application of Core–Shell Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm) Nanoparticle as Trimodal (MRI, PET/SPECT, and Optical) Imaging Agents

Xianjin Cui; Domokos Máthé; Noémi Kovács; Ildiko Horvath; Maite Jauregui-Osoro; Rafael T. M. de Rosales; Gregory Mullen; Wilson Wong; Yong Yan; Dirk Krüger; Andrei N. Khlobystov; Maria del Carmen Gimenez-Lopez; Mariann Semjeni; Krisztián Szigeti; Dániel S. Veres; Haizhou Lu; Ignacio Hernández; W. P. Gillin; Andrea Protti; Katalin Kis Petik; Mark Green; Philip J. Blower

Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM(-1) s(-1) at 3T, a high affinity to [(18)F]-fluoride or radiometal-bisphosphonate conjugates (e.g., (64)Cu and (99m)Tc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging.


Small | 2012

Interactions of Gold Nanoparticles with the Interior of Hollow Graphitized Carbon Nanofibers

Alessandro La Torre; Michael W. Fay; Graham A. Rance; Maria del Carmen Gimenez-Lopez; William A. Solomonsz; Paul D. Brown; Andrei N. Khlobystov

Interactions of free-standing gold nanoparticles and hollow graphitized nanofibers in colloidal suspension are investigated, revealing the first example of the controlled arrangement of nanoparticles inside nano-containers, as directed by their internal structure. The ordering is highly effective for small gold nanoparticles whose sizes are commensurate with the height of graphitic step-edges in the graphitized carbon nanofibers and is less effective for larger gold nanoparticles. Studies aimed at understanding the role of the organic-solvent surface tension, employed for the filling experiments, demonstrate that gold nanoparticles become preferentially anchored into the hollow graphitized carbon nanofibers under a mixture of pentane/CO(2) in supercritical conditions. It is shown that a three-step cleaning procedure enables effective removal of gold nanoparticles adsorbed on the exterior surface of graphitized carbon nanofibers, while ordered arrays of encapsulated nanoparticles are retained.

Collaboration


Dive into the Maria del Carmen Gimenez-Lopez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul D. Brown

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

Peter H. Beton

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael W. Fay

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge