Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Di Bari is active.

Publication


Featured researches published by Maria Di Bari.


Journal of Cellular and Molecular Medicine | 2013

M2 receptor activation inhibits cell cycle progression and survival in human glioblastoma cells

Michela Ferretti; Maria Di Bari; Claudia Conte; Emilia Castigli; Miriam Sciaccaluga; Donatella Ponti; Paola Ruggieri; Antonino Raco; Ruggero Ricordy; Antonella Calogero; Ada Maria Tata

Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy.


International Immunopharmacology | 2015

Nicotinic receptor activation negatively modulates pro-inflammatory cytokine production in multiple sclerosis patients

Marcella Reale; Maria Di Bari; Marta Di Nicola; Chiara D'Angelo; Federica De Angelis; Lucia Velluto; Ada Maria Tata

Acetylcholine (ACh) and its receptors of muscarinic and nicotinic types are involved in the modulation of immune and inflammatory responses. In present work we have characterized the nicotinic receptors expression in PBMC of RR-MS patients and healthy donors (HD) and their ability to modulate pro-inflammatory cytokines. Here we report that the IL-1β e IL-17 levels are significantly increased in serum of RR-MS patients in respect to HD and that the PBMC stimulation with PHA caused a significant increase in pro-inflammatory cytokine levels both in RR-MS and HD subjects, with higher increase of protein release in RR-MS patients than in HD. The PBMC treatment with PHA plus nicotine produced a significant decrease of IL-1β e IL-17 both as transcript and as protein, confirming that the PBMC of the patients respond to the cholinergic stimulation more than PBMC of HD. By real time PCR and western blot analysis we have also demonstrated that in particular α7 receptor subtype appeared expressed at comparable levels both in RR-MS patients and HD. The PHA stimulation results to inhibit the α7 subunit expression while the nicotine causes a significant increase in α7 transcripts but only in MS patients. The data obtained highlight the role of α7 receptor subtype in the modulation of anti-inflammatory cytokines also in MS. Moreover the ability of nicotine to up-regulate the expression of α7 receptor subtype in RR-MS patients, indicates that nicotinic receptor stimulation may contribute to down-modulate the inflammation occurred in MS by a positive feedback control of its expression.


International Journal of Molecular Sciences | 2016

Dysregulated Homeostasis of Acetylcholine Levels in Immune Cells of RR-Multiple Sclerosis Patients

Maria Di Bari; Marcella Reale; Marta Di Nicola; Viviana Orlando; Sabrina Galizia; Italo Porfilio; Erica Costantini; Chiara D’Angelo; Serena Ruggieri; Stefano Biagioni; Claudio Gasperini; Ada Maria Tata

Multiple sclerosis (MS) is characterized by pro-inflammatory cytokine production. Acetylcholine (ACh) contributes to the modulation of central and peripheral inflammation. We studied the homeostasis of the cholinergic system in relation to cytokine levels in immune cells and sera of relapsing remitting-MS (RR-MS) patients. We demonstrated that lower ACh levels in serum of RR-MS patients were inversely correlated with the increased activity of the hydrolyzing enzymes acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). Interestingly, the expression of the ACh biosynthetic enzyme and the protein carriers involved in non-vesicular ACh release were found overexpressed in peripheral blood mononuclear cells of MS patients. The inflammatory state of the MS patients was confirmed by increased levels of TNFα, IL-12/IL-23p40, IL-18. The lower circulating ACh levels in sera of MS patients are dependent on the higher activity of cholinergic hydrolyzing enzymes. The smaller ratio of ACh to TNFα, IL-12/IL-23p40 and IL-18 in MS patients, with respect to healthy donors (HD), is indicative of an inflammatory environment probably related to the alteration of cholinergic system homeostasis.


Cancer Biology & Therapy | 2014

M2muscarinic receptors inhibit cell proliferation and migration in urothelial bladder cancer cells

Luca Pacini; Elena De Falco; Maria Di Bari; Andrea Coccia; Camilla Siciliano; Donatella Ponti; Antonio Luigi Pastore; Vincenzo Petrozza; Antonio Carbone; Ada Maria Tata; Antonella Calogero

The role of muscarinic receptors in several diseases including cancer has recently emerged. To evaluate the hypothesis that muscarinic acetylcholine receptors may play a role in bladder cancer as well as in other tumor types, we investigated their expression in bladder tumor specimens. All examined samples expressed the M1, M2 and M3 receptor subtypes. We also found that the level of M2 transcripts, but not those of M1 or M3, significantly increased with the tumor histologic grade. In view of these results, we proceeded to investigate whether the M2 agonist Arecaidine had any effect on in vitro cell growth and migration of T24 cells, a bladder tumor cell line expressing the muscarinic receptors, including the M2 subtype. We observed that Arecaidine significantly reduced T24 and 5637 cell proliferation and migration in a concentration dependent manner. The silencing of M2 receptor by siRNA in T24 and 5637 cell lines showed the inability of Arecaidine (100 μM) to inhibit cell proliferation after 48 hours, whereas the use of M1 and M3 antagonists in T24 appeared not to counteract the Arecaidine effect, suggesting that the inhibition of cell proliferation was directly dependent on M2 receptor activation. These data suggest that M2 muscarinic receptors may play a relevant role in bladder cancer and represent a new attractive therapeutic target.


International Immunopharmacology | 2015

The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells.

Francesco Alessandrini; I. Cristofaro; Maria Di Bari; Jacopo Zasso; Luciano Conti; Ada Maria Tata

The involvement of muscarinic receptors in cancer has been reported. Recently we have demonstrated that the activation of M2 muscarinic receptors, through arecaidine propargyl ester, arrests cell proliferation and induces apoptosis in primary and established glioblastoma cell lines. Considering the inability of conventional drugs to completely counteract the growth of glioblastoma cancer stem cells (GSCs), we have investigated the effect produced by arecaidine on GSC growth and survival. The expression of M2 receptors has been analyzed in GSC cell lines derived from human biopsies. Based on the M2 receptor expression levels, we have selected two gliolastoma cell lines (GB7 and GB8). In both cell lines the treatment with arecaidine decreased GCS cell growth. GB7 cells exhibited a time- and dose-dependent decrease of cell proliferation. Moreover arecaidine caused a reduced cell survival in particular in GB8 cell line. These effects appear to be mediated by M2 receptor activation as suggested by pharmacological experiments performed in the presence of M1 and M3 preferring antagonists (pirenzepine and 4-DAMP respectively) and M2/M4 antagonist methoctramine. M2 receptor silencing by siRNA has further confirmed that the inhibition of cell growth arecaidine-induced was mediated by the M2 receptor activation. These results suggest that the M2 receptors may represent a new interesting therapeutic tool to counteract glioblastoma cancer stem cell growth and survival.


Neurochemistry International | 2015

Cytotoxic and genotoxic effects mediated by M2 muscarinic receptor activation in human glioblastoma cells.

Maria Di Bari; Vanessa Tombolillo; Claudia Conte; Emila Castigli; Miriam Sciaccaluga; Egidio Iorio; Giulia Carpinelli; Ruggero Ricordy; Mario Fiore; Francesca Degrassi; Ada Maria Tata

Glioblastomas are the most common brain tumors in humans. Previously, we demonstrated that the muscarinic receptor agonist, arecaidine propargyl ester, via M2 receptors, inhibits cell proliferation in a time and dose-dependent manner and induces a severe apoptosis in human U251 and U87 glioblastoma cell lines. In order to clarify the mechanisms causing apoptosis after arecaidine treatment, we analyzed the ability of arecaidine to induce oxidative stress. By dichloro-dihydro-fluorescein diacetate (DCFDA) staining, we demonstrated that arecaidine increased the intracellular ROS levels. ROS accumulation was completely counteracted by the ROS scavenger, N-acetyl-l-cysteine (NAC). Apoptotic cell death appeared directly correlated to ROS production since NAC was able to counteract this effect. Although there was an up-regulation of some detoxifying enzyme expression such as superoxide dismutase (MnSOD) and sirtuin-1 (SIRT1), the cytotoxic effect caused by arecaidine treatment caused DNA damage, as demonstrated by the increase of histone γ-H2AX positive cells, and chromosomal aberrations. These effects were mediated by M2 receptor activation; in fact after silencing of M2 receptors by siRNA, the increase of γ-H2AX positive cells was abolished. In conclusion, in addition to a cytostatic effect previously described, in the present study we have better characterized the mechanisms causing the cytotoxic effects and the apoptotic cell death in glioblastoma cells after M2 receptor activation. These data allow to consider this receptor a new interesting therapeutic tool for the glioblastoma treatment.


Scientific Reports | 2018

Butyrylcholinesterase and Acetylcholinesterase polymorphisms in Multiple Sclerosis patients: implication in peripheral inflammation

Marcella Reale; Erica Costantini; Marta Di Nicola; Chiara D’Angelo; Sara Franchi; Marco D’Aurora; Maria Di Bari; Viviana Orlando; Sabrina Galizia; Serena Ruggieri; Liborio Stuppia; Claudio Gasperini; Ada Maria Tata; Valentina Gatta

Multiple Sclerosis (MS) is an autoimmune disease, having not fully understood aetiology, and both genetic and environmental factors contribute to the pathogenesis of the disease. The cholinergic system has been indicated as a mediator of neuro-immune interactions, as well as an internal regulator of immune responses. The aim of the present research was to assess the associations between BChE and AChE genetic variations and serum cholinergic and inflammatory profiles in 102 Relapsing Remitting-MS patients and 117 healthy controls. An increased frequency of the BChE K-allele in MS patients as compared to controls was found. In addition, data showed that patients had higher BChE enzymatic activity, which is increased by the presence of the polymorphic allele and reduced amounts of circulating ACh. AChE polymorphism was significantly associated to reduced activity in both patients and controls. We propose that serum BChE and AChE activity may be used as a secondary markers to assess the role of non-neuronal cholinergic system in regulating peripheral inflammation via ACh regulation. This pilot study shed light on the role of the non-neuronal cholinergic system in immune cells to better understand MS pathogenesis. The cross-talk between the periphery and the CNS could have a new undescribed crucial role for MS, regarded as a systemic disease.


Central nervous system agents in medicinal chemistry | 2017

Cholinergic system and neuroinflammation: Implication in multiple sclerosis

Maria Di Bari; G. Pinto; Marcella Reale; Guadalupe Mengod; Ada Maria Tata

BACKGROUND Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central nervous system (CNS) characterized by leucocytes infiltration, demyelination, axonal degeneration and neuronal death. Although the etiology of MS is still unkwon, inflammation and autoimmunity are considered to be key players of the disease. Nervous System: The severe alterations affecting the nervous system contribute to the motor and cognitive disabilities and are in large part dependent on severe inflammatory processes active in both central nervous system and immune system. Acetylcholine (ACh) appears to be involved in the modulation of central and peripheral inflammation. Immune cells as well as astrocytes and microglia respond to ACh stimuli by activation of cholinergic receptors. Muscarinic and nicotinic receptors differently contribute to the modulation of immunological and inflammatory processes stimulating pro- and anti-inflammatory cytokines respectively. The role played by ACh in MS is not yet fully understood, although some results point to its involvement in different neurological disorders such as Alzheimers disease and schizophrenia. CONCLUSION In the present review we summarize the evidence indicating the correlation between nervous system dysfunction in MS, with inflammation and cholinergic system alterations. Experiments performed in MS animal models and analyses on biological fluids from MS patients such as blood, serum and cerebrospinal fluid suggest that cholinergic alterations may contribute to the dysregulated inflammatory processes of MS. Many current therapeutic approaches in MS are based on anti-inflammatory drugs. We also discuss how the use of cholinesterase inhibitors or ACh mimetics may represent a new interesting therapeutic approach in MS.


International Journal of Molecular Sciences | 2018

Mir-34a-5p Mediates Cross-Talk between M2 Muscarinic Receptors and Notch-1/EGFR Pathways in U87MG Glioblastoma Cells: Implication in Cell Proliferation

Maria Di Bari; Valeria Bevilacqua; Antonella De Jaco; Pietro Laneve; Roberta Piovesana; Laura Trobiani; Claudio Talora; Elisa Caffarelli; Ada Maria Tata

Glioblastoma (GBM) is the most aggressive human brain tumor. The high growth potential and decreased susceptibility to apoptosis of the glioma cells is mainly dependent on genetic amplifications or mutations of oncogenic or pro-apoptotic genes, respectively. We have previously shown that the activation of the M2 acetylcholine muscarinic receptors inhibited cell proliferation and induced apoptosis in two GBM cell lines and cancer stem cells. The aim of this study was to delve into the molecular mechanisms underlying the M2-mediated cell proliferation arrest. Exploiting U87MG and U251MG cell lines as model systems, we evaluated the ability of M2 receptors to interfere with Notch-1 and EGFR pathways, whose activation promotes GBM proliferation. We demonstrated that the activation of M2 receptors, by agonist treatment, counteracted Notch and EGFR signaling, through different regulatory cascades depending, at least in part, on p53 status. Only in U87MG cells, which mimic p53-wild type GBMs, did M2 activation trigger a molecular circuitry involving p53, Notch-1, and the tumor suppressor mir-34a-5p. This regulatory module negatively controls Notch-1, which affects cell proliferation mainly through the Notch-1/EGFR axis. Our data highlighted, for the first time, a molecular circuitry that is deregulated in the p53 wild type GBM, based on the cross-talk between M2 receptor and the Notch-1/EGFR pathways, mediated by mir-34a-5p.


European Journal of Neuroscience | 2018

Comparative study of the expression of cholinergic system components in the CNS of experimental autoimmune encephalomyelitis mice: Acute vs remitting phase

G. Pinto; Maria Di Bari; Rocío Martín-Álvarez; Samantha Sperduti; Silvia Serrano-Acedo; Valentina Gatta; Ada Maria Tata; Guadalupe Mengod

Acetylcholine (ACh) is involved in the modulation of the inflammatory response. ACh levels are regulated by its synthesizing enzyme, choline acetyltransferase (ChAT), and by its hydrolyzing enzymes, mainly acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A more comprehensive understanding of the cholinergic system in experimental autoimmune encephalomyelitis (EAE) disease progression could pave the path for the development of therapies to ameliorate multiple sclerosis (MS). In this work, we analyzed possible alterations of the CNS cholinergic system in the neuroinflammation process by using a MOG‐induced EAE mice model. MOG‐ and vehicle‐treated animals were studied at acute and remitting phases. We examined neuropathology and analyzed mRNA expression of ChAT, AChE and the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR), as well as AChE and BuChE enzyme activities, in brain and spinal cord sections during disease progression. The mRNA expression and enzyme activities of these cholinergic markers were up‐ or down‐regulated in many cholinergic areas and other brain areas of EAE mice in the acute and remitting phases of the disease. BuChE was present in a higher proportion of astroglia and microglia/macrophage cells in the EAE remitting group. The observed changes in cholinergic markers expression and cellular localization in the CNS during EAE disease progression suggests their potential involvement in the development of the neuroinflammatory process and may lay the ground to consider cholinergic system components as putative anti‐inflammatory therapeutic targets for MS.

Collaboration


Dive into the Maria Di Bari's collaboration.

Top Co-Authors

Avatar

Ada Maria Tata

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Marcella Reale

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Marta Di Nicola

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Antonella Calogero

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Chiara D’Angelo

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

Claudia Conte

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Claudio Gasperini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Donatella Ponti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Erica Costantini

University of Chieti-Pescara

View shared research outputs
Top Co-Authors

Avatar

G. Pinto

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge