Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Diakonova is active.

Publication


Featured researches published by Maria Diakonova.


The EMBO Journal | 2000

Involvement of ezrin/moesin in de novo actin assembly on phagosomal membranes

Hélène Defacque; Morten Egeberg; Anja Habermann; Maria Diakonova; Christian Roy; Paul Mangeat; Wolfgang Voelter; Gerard Marriott; Jörg Pfannstiel; Heinz Faulstich; Gareth Griffiths

The current study focuses on the molecular mechanisms responsible for actin assembly on a defined membrane surface: the phagosome. Mature phagosomes were surrounded by filamentous actin in vivo in two different cell types. Fluorescence microscopy was used to study in vitro actin nucleation/polymerization (assembly) on the surface of phagosomes isolated from J774 mouse macrophages. In order to prevent non‐specific actin polymerization during the assay, fluorescent G‐actin was mixed with thymosin β4. The cytoplasmic side of phagosomes induced de novo assembly and barbed end growth of actin filaments. This activity varied cyclically with the maturation state of phagosomes, both in vivo and in vitro. Peripheral membrane proteins are crucial components of this actin assembly machinery, and we demonstrate a role for ezrin and/or moesin in this process. We propose that this actin assembly process facilitates phagosome/endosome aggregation prior to membrane fusion.


Journal of Biological Chemistry | 2002

SH2-Bβ is a Rac binding protein that regulates cell motility

Maria Diakonova; David R. Gunter; James Herrington; Christin Carter-Su

The Src homology 2 (SH2) domain-containing protein SH2-Bβ binds to and is a substrate of the growth hormone (GH) and cytokine receptor-associated tyrosine kinase JAK2. SH2-Bβ also binds, via its SH2 domain, to multiple activated growth factor receptor tyrosine kinases. We have previously implicated SH2-Bβ in GH and platelet-derived growth factor regulation of the actin cytoskeleton. We extend these findings by establishing a potentiating effect of SH2-Bβ on GH-dependent cell motility and defining regions of SH2-Bβ required for this potentiation. Time-lapse video microscopy, phagokinetic, and/or wounding assays demonstrate reduced movement of cells overexpressing SH2-Bβ lacking an intact SH2 domain because of a point mutation or a C-terminal truncation. An N-terminal proline-rich domain (amino acids 85–106) of SH2-Bβ is required for inhibition of cellular motility by SH2 domain-deficient mutants. Co-immunoprecipitation experiments indicate that Rac binds to this domain. GH is shown to activate endogenous Rac, and dominant negative mutants of SH2-Bβ are shown to inhibit membrane ruffling induced by constitutively active Rac. These findings suggest that SH2-Bβ is an adapter protein that facilitates actin rearrangement and cellular motility by recruiting Rac and potentially Rac-regulating, Rac effector, or other actin-regulating proteins to activated cytokine (e.g. GH) and growth factor receptors.


Journal of Biological Chemistry | 2007

JAK2 Tyrosine Kinase Phosphorylates PAK1 and Regulates PAK1 Activity and Functions

Leah Rider; Alla Shatrova; Edward P. Feener; Leslie Webb; Maria Diakonova

The serine-threonine kinase PAK1 is activated by small GTPase-dependent and -independent mechanisms and promotes cell survival. However, the role of tyrosyl phosphorylation in the regulation of PAK1 function is poorly understood. In this study, we have shown that the prolactin-activated tyrosine kinase JAK2 phosphorylates PAK1 in vivo. Wild type, but not kinase-dead, JAK2 directly phosphorylates PAK1 in cells and in an in vitro kinase assay. PAK1 tyrosines 153, 201, and 285 were identified as sites of JAK2 tyrosyl phosphorylation by mass spectrometry and two-dimensional peptide mapping. Mutation of PAK1 tyrosines 153, 201, and 285 to phenylalanines individually or in combination implicated these PAK1 tyrosines in the regulation of PAK1 kinase activity. Tyrosyl phosphorylation by JAK2 significantly increases PAK1 kinase activity, whereas similar phosphorylation of the PAK1 Y153F,Y201F,Y285F mutant has no effect on PAK1 activity. Tyrosyl phosphorylation of wild type PAK1 decreases apoptosis induced by serum deprivation and staurosporine treatment and increases cell motility. In contrast, these parameters are unaltered in the PAK1 Y153F,Y201F,Y285F mutant. Our findings indicate that JAK2 phosphorylates PAK1 at these specific tyrosines and that this phosphorylation plays an important role in cell survival and motility.


Molecular Endocrinology | 2011

PAK1-Nck Regulates Cyclin D1 Promoter Activity in Response to Prolactin

Jing Tao; Peter Oladimeji; Leah Rider; Maria Diakonova

Prolactin (PRL) is critical for alveolar proliferation and differentiation in normal mammary development and is also implicated in breast cancer. PRL influences cell proliferation and growth by altering the expression of cyclin D1. Cyclin D1 expression is directly regulated by PRL through the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 5-mediated transcriptional activation of the cyclin D1 promoter. A p21-activated serine-threonine kinase (PAK)1 has also been implicated in the regulation of cyclin D1 gene expression. We have previously demonstrated that JAK2 directly phosphorylates PAK1 and extend these data here to demonstrate that PAK1 activates the cyclin D1 promoter in response to PRL. We show that mutation of PAK1 Tyr 153, 201, and 285 (sites of JAK2 phosphorylation; PAK1 Y3F) decreases both PAK1 nuclear translocation in response to PRL and PRL-induced cyclin D1 promoter activity by 55%. Mutation of the PAK1 nuclear localization signals decreases PRL-induced cyclin D1 promoter activity by 46%. A PAK1 Y3F mutant lacking functional nuclear localization signals decreases PRL-induced cyclin D1 activity by 68%, suggesting that there is another PAK1-dependent mechanism to activate the cyclin D1 promoter. We have found that adapter protein Nck sequesters PAK1 in the cytoplasm and that coexpression of both PAK1 and Nck inhibits the amplifying effect of PRL-induced PAK1 on cyclin D1 promoter activity (95% inhibition). This inhibition is partially abolished by disruption of PAK1-Nck binding. We propose two PAK1-dependent mechanisms to activate cyclin D1 promoter activity in response to PRL: via nuclear translocation of tyrosyl-phosphorylated PAK1 and via formation of a Nck-PAK1 complex that sequesters PAK1 in the cytoplasm.


Journal of Biological Chemistry | 2003

YXXL Motifs in SH2-Bβ Are Phosphorylated by JAK2, JAK1, and Platelet-derived Growth Factor Receptor and Are Required for Membrane Ruffling

Karen B. O'Brien; Lawrence S. Argetsinger; Maria Diakonova; Christin Carter-Su

SH2-Bβ binds to the activated form of JAK2 and various receptor tyrosine kinases. It is a potent stimulator of JAK2, is required for growth hormone (GH)-induced membrane ruffling, and increases mitogenesis stimulated by platelet-derived growth factor (PDGF) and insulin-like growth factor I. Its domain structure suggests that SH2-Bβ may act as an adapter protein to recruit downstream signaling proteins to kinase·SH2-Bβ complexes. SH2-Bβ is tyrosyl-phosphorylated in response to GH and interferon-γ, stimulators of JAK2, as well as in response to PDGF and nerve growth factor. To begin to elucidate the role of tyrosyl phosphorylation in the function of SH2-Bβ, we used phosphopeptide mapping, mutagenesis, and a phosphotyrosine-specific antibody to identify Tyr-439 and Tyr-494 in SH2-Bβ as targets of JAK2 bothin vitro and in intact cells. SH2-Bβ lacking Tyr-439 and Tyr-494 inhibits GH-induced membrane ruffling but still activates JAK2. We provide evidence that JAK1, like JAK2, phosphorylates Tyr-439 and Tyr-494 in SH2-Bβ and that PDGF receptor phosphorylates SH2-Bβ on Tyr-439. Therefore, phosphorylated Tyr-439 and/or Tyr-494 in SH2-Bβ may provide a binding site for one or more proteins linking cytokine receptor·JAK2 complexes and/or receptor tyrosine kinases to the actin cytoskeleton.


Molecular Endocrinology | 2013

PAK1 Regulates Breast Cancer Cell Invasion through Secretion of Matrix Metalloproteinases in Response to Prolactin and Three-Dimensional Collagen IV

Leah Rider; Peter Oladimeji; Maria Diakonova

p21-Activated serine-threonine kinase (PAK1) is implicated in breast cancer. We have shown previously that PAK1 is tyrosyl phosphorylated by prolactin (PRL)-activated Janus tyrosine kinase (JAK2). Although a role for both PRL and PAK1 in breast cancer is widely acknowledged, the mechanism remains poorly understood. In the present study, PRL-activated PAK1 stimulates the invasion of TMX2-28 human breast cancer cells through Matrigel. Three-dimensional (3D) collagen IV stimulates the secretion of the matrix proteases, metalloproteinase (MMP)-1 and -3 that is further enhanced by the PRL-dependent tyrosyl phosphorylation of PAK1. 3D collagen IV also stimulates the expression and secretion of MMP-2, but in contrast to MMP-1 and -3, PRL/PAK1 signaling down-regulates MMP-2 expression and secretion. In contrast, MMP-9 expression and secretion are stimulated by 3D collagen I, not collagen IV, and are not affected by PRL but are down-regulated by PAK1. MMP-1 and -3 are required and MMP-2 contributes to PRL-dependent invasion. ERK1/2 signaling appears to be required for the enhanced expression and secretion of MMP-1 and -3 and enhanced PRL-dependent invasion. p38 MAPK and c-Jun N-terminal kinase 1/2 pathways participate in production of MMP-1 and -3 as well as in PRL/PAK1-dependent cell invasion. Together, these data illustrate the complex interaction between the substratum and PRL/PAK1 signaling in human breast cancer cells and suggest a pivotal role for PRL-dependent PAK1 tyrosyl phosphorylation in MMP secretion.


Molecular Endocrinology | 2009

Adapter Protein SH2B1β Cross-Links Actin Filaments and Regulates Actin Cytoskeleton

Leah Rider; Jing Tao; Stacy Snyder; Brittany Brinley; Jiayun Lu; Maria Diakonova

The Src homology 2 (SH2) domain-containing adapter protein SH2B1beta plays a role in severe obesity, leptin and insulin resistance, and infertility. SH2B1beta was initially identified as a Janus tyrosine kinase 2 (JAK2) substrate, and it has been implicated in cell motility and regulation of the actin rearrangement in response to GH and platelet-derived growth factor. SH2B1beta is also required for maximal actin-based motility of Listeria. Here we have used a low-speed pelleting assay and electron microscopy to demonstrate that SH2B1beta has two actin-binding sites and that it cross-links actin filaments in vitro. Wild-type SH2B1beta localized to cell ruffles and along filopodia, but deletion of amino acids 150-200 (the first actin-binding site) led to mislocalization of the protein to filopodia tip complexes where it colocalized with vasodilator-stimulated phosphoprotein (VASP). Based on studies performed in VASP-deficient MVD7(-/-) cells, with or without green fluorescent protein-VASP reconstitution, we concluded that the proper intracellular localization of native SH2B1beta required the presence of the first SH2B1beta actin-binding site and VASP. Finally, we found that both SH2B1beta actin-binding domains were required for maximal GH- and prolactin-induced cell ruffling. Together, these results suggest that SH2B1beta functions as an adapter protein that cross-links actin filaments, leading to modulation of cellular responses in response to JAK2 activation.


Molecular Endocrinology | 2013

Tyrosyl phosphorylated PAK1 regulates breast cancer cell motility in response to prolactin through filamin A

Alan Hammer; Leah Rider; Peter Oladimeji; Leslie Cook; Quanwen Li; Raymond R. Mattingly; Maria Diakonova

The p21-activated serine-threonine kinase (PAK1) is activated by small GTPase-dependent and -independent mechanisms and regulates cell motility. Both PAK1 and the hormone prolactin (PRL) have been implicated in breast cancer by numerous studies. We have previously shown that the PRL-activated tyrosine kinase JAK2 (Janus tyrosine kinase 2) phosphorylates PAK1 in vivo and identified tyrosines (Tyr) 153, 201, and 285 in the PAK1 molecule as sites of JAK2 tyrosyl phosphorylation. Here, we have used human breast cancer T47D cells stably overexpressing PAK1 wild type or PAK1 Y3F mutant in which Tyr(s) 153, 201, and 285 were mutated to phenylalanines to demonstrate that phosphorylation of these three tyrosines are required for maximal PRL-dependent ruffling. In addition, phosphorylation of these three tyrosines is required for increased migration of T47D cells in response to PRL as assessed by two independent motility assays. Finally, we show that PAK1 phosphorylates serine (Ser) 2152 of the actin-binding protein filamin A to a greater extent when PAK1 is tyrosyl phosphorylated by JAK2. Down-regulation of PAK1 or filamin A abolishes the effect of PRL on cell migration. Thus, our data presented here bring some insight into the mechanism of PRL-stimulated motility of breast cancer cells.


Molecular Endocrinology | 2011

Adapter Protein SH2B1β Binds Filamin A to Regulate Prolactin-Dependent Cytoskeletal Reorganization and Cell Motility

Leah Rider; Maria Diakonova

Prolactin (PRL) regulates cytoskeletal rearrangement and cell motility. PRL-activated Janus tyrosine kinase 2 (JAK2) phosphorylates the p21-activated serine-threonine kinase (PAK)1 and the Src homology 2 (SH2) domain-containing adapter protein SH2B1β. SH2B1β is an actin-binding protein that cross-links actin filaments, whereas PAK1 regulates the actin cytoskeleton by different mechanisms, including direct phosphorylation of the actin-binding protein filamin A (FLNa). Here, we have used a FLNa-deficient human melanoma cell line (M2) and its derivative line (A7) that stably expresses FLNa to demonstrate that SH2B1β and FLNa are required for maximal PRL-dependent cell ruffling. We have found that in addition to two actin-binding domains, SH2B1β has a FLNa-binding domain (amino acids 200-260) that binds directly to repeats 17-23 of FLNa. The SH2B1β-FLNa interaction participates in PRL-dependent actin rearrangement. We also show that phosphorylation of the three tyrosines of PAK1 by JAK2, as well as the presence of FLNa, play a role in PRL-dependent cell ruffling. Finally, we show that the actin- and FLNa-binding-deficient mutant of SH2B1β (SH2B1β 3Δ) abolished PRL-dependent ruffling and PRL-dependent cell migration when expressed along with PAK1 Y3F (JAK2 tyrosyl-phosphorylation-deficient mutant). Together, these data provide insight into a novel mechanism of PRL-stimulated regulation of the actin cytoskeleton and cell motility via JAK2 signaling through FLNa, PAK1, and SH2B1β. We propose a model for PRL-dependent regulation of the actin cytoskeleton that integrates our findings with previous studies.


Advances in Experimental Medicine and Biology | 2015

Tyrosyl Phosphorylated Serine-Threonine Kinase PAK1 is a Novel Regulator of Prolactin-Dependent Breast Cancer Cell Motility and Invasion

Alan Hammer; Maria Diakonova

Despite efforts to discover the cellular pathways regulating breast cancer metastasis, little is known as to how prolactin (PRL) cooperates with extracellular environment and cytoskeletal proteins to regulate breast cancer cell motility and invasion. We implicated serine-threonine kinase p21-activated kinase 1 (PAK1) as a novel target for PRL-activated Janus-kinase 2 (JAK2). JAK2-dependent PAK1 tyrosyl phosphorylation plays a critical role in regulation of both PAK1 kinase activity and scaffolding properties of PAK1. Tyrosyl phosphorylated PAK1 facilitates PRL-dependent motility via at least two mechanisms: formation of paxillin/GIT1/βPIX/pTyr-PAK1 complexes resulting in increased adhesion turnover and phosphorylation of actin-binding protein filamin A. Increased adhesion turnover is the basis for cell migration and phosphorylated filamin A stimulates the kinase activity of PAK1 and increases actin-regulating activity to facilitate cell motility. Tyrosyl phosphorylated PAK1 also stimulates invasion of breast cancer cells in response to PRL and three-dimensional (3D) collagen IV via transcription and secretion of MMP-1 and MMP-3 in a MAPK-dependent manner. These data illustrate the complex interaction between PRL and the cell microenvironment in breast cancer cells and suggest a pivotal role for PRL/PAK1 signaling in breast cancer metastasis.

Collaboration


Dive into the Maria Diakonova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Tao

University of Toledo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge