Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Dora Carrion is active.

Publication


Featured researches published by Maria Dora Carrion.


Bioorganic & Medicinal Chemistry | 2008

Design, synthesis, and biological evaluation of thiophene analogues of chalcones

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Carlota Lopez Cara; Olga Cruz-Lopez; Delia Preti; Manlio Tolomeo; Stefania Grimaudo; Antonella Di Cristina; Nicola Zonta; Jan Balzarini; Andrea Brancale; Taradas Sarkar; Ernest Hamel

Chalcones are characterized by possessing an enone moiety between two aromatic rings. A series of chalcone-like agents, in which the double bond of the enone system is embedded within a thiophene ring, were synthesized and evaluated for antiproliferative activity and inhibition of tubulin assembly and colchicine binding to tubulin. The replacement of the double bond with a thiophene maintains antiproliferative activity and therefore must not significantly alter the relative conformation of the two aryl rings. The synthesized compounds were found to inhibit the growth of several cancer cell lines at nanomolar to low micromolar concentrations. In general, all compounds having significant antiproliferative activity inhibited tubulin polymerization with an IC(50)<2microM. Several of these compounds caused K562 cells to arrest in the G2/M phase of the cell cycle.


Journal of Medicinal Chemistry | 2008

Synthesis and biological evaluation of 1-methyl-2-(3 ',4 ',5 '-trimethoxybenzoyl)-3-aminoindoles as a new class of antimitotic agents and tubulin inhibitors

Romeo Romagnoli; Pier Giovanni Baraldi; Taradas Sarkar; Maria Dora Carrion; Carlota Lopez Cara; Olga Cruz-Lopez; Delia Preti; Mojgan Aghazadeh Tabrizi; Manlio Tolomeo; Stefania Grimaudo; Antonella Di Cristina; Nicola Zonta; Jan Balzarini; Andrea Brancale; Hsing-Pang Hsieh; Ernest Hamel

The 2-(3,4,5-trimethoxybenzoyl)-2-aminoindole nucleus was used as the fundamental structure for the synthesis of compounds modified with respect to positions C-4 to C-7 with different moieties (chloro, methyl, or methoxy). Additional structural variations concerned the indole nitrogen, which was alkylated with small alkyl groups such as methyl or ethyl. We have identified 1-methyl-2-(3,4,5-trimethoxybenzoyl)-3-amino-7-methoxyindole as a new highly potent antiproliferative agent that targets tubulin at the colchicine binding site and leads to apoptotic cell death.


Journal of Medicinal Chemistry | 2009

2-Arylamino-4-Amino-5-Aroylthiazoles. "One-Pot" Synthesis and Biological Evaluation of a New Class of Inhibitors of Tubulin Polymerization

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Olga Cruz-Lopez; Carlota Lopez Cara; Giuseppe Basso; Giampietro Viola; Mohammed Khedr; Jan Balzarini; Siavosh Mahboobi; Andreas Sellmer; Andrea Brancale; Ernest Hamel

The essential role of microtubules in mitosis makes them a major target of compounds useful for cancer therapy. In our search for potent antitumor agents, a novel series of 2-anilino-4-amino-5-aroylthiazoles was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. SAR was elucidated with various substitutions on the phenylamino and aroyl moiety at the 2- and 5-positions, respectively, of the 4-aminothiazole skeleton. Tumor cell exposure to several of these compounds led to the arrest of HeLa cells in the G2/M phase of the cell cycle and induction of apoptosis.


Journal of Medicinal Chemistry | 2008

Synthesis and Biological Evaluation of 2-Amino-3-(4-Chlorobenzoyl)-4-[N-(Substituted) Piperazin-1-yl]Thiophenes as Potent Allosteric Enhancers of the A1 Adenosine Receptor

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Carlota Lopez Cara; Olga Cruz-Lopez; Maria Antonietta Iaconinoto; Delia Preti; John C. Shryock; Allan R. Moorman; Fabrizio Vincenzi; Katia Varani; Pier Andrea Borea

The synthesis and evaluation of a series of 2-amino-3-(4-chlorobenzoyl)-4-[4-(alkyl/aryl)piperazin-yl]thiophene derivatives as allosteric enhancers of the A 1-adenosine receptor are described. The nature of substituents on the phenyl ring tethered to the piperazine seem to exert a fundamental influence on the allosteric enhancer activity, with the 4-chlorophenyl 8f and 4-trifluoromethyl 8j derivatives being the most active compounds in binding (saturation and displacement experiments) and functional cAMP studies.


Bioorganic & Medicinal Chemistry Letters | 2009

Hybrid α-bromoacryloylamido chalcones. Design, synthesis and biological evaluation

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Olga Cruz-Lopez; Carlota Lopez Cara; Jan Balzarini; Ernest Hamel; Alessandro Canella; Enrica Fabbri; Roberto Gambari; Giuseppe Basso; Giampietro Viola

Research into the anti-tumor properties of chalcones has received significant attention over the last few years Two novel large series of alpha-bromoacryloylamido chalcones 1a-m and 2a-k containing a pair of Michael acceptors in their structures, corresponding to the alpha-bromoacryloyl moiety and the alpha,beta-unsaturated ketone system of the chalcone framework, were synthesized and evaluated for antiproliferative activity against five cancer cell lines. Such hybrid derivatives demonstrated significantly increased anti-tumor activity compared with the corresponding amino chalcones. The most promising lead molecules were 1k, 1m and 2j, which had the highest activity toward the five cell lines. Flow cytometry with K562 cells showed that the most active compounds resulted in a large proportion of the cells entering in the apoptotic sub-G0-G1 peak. Moreover, compound 1k induced apoptosis through the mitochondrial pathway and activated caspase-3.


Bioorganic & Medicinal Chemistry | 2008

Synthesis and biological evaluation of 2-(3 ',4 ',5 '-trimethoxybenzoyl)-3-N, N-dimethylamino benzo b furan derivatives as inhibitors of tubulin polymerization

Romeo Romagnoli; Pier Giovanni Baraldi; Taradas Sarkar; Maria Dora Carrion; Olga Cruz-Lopez; Carlota Lopez Cara; Manlio Tolomeo; Stefania Grimaudo; Antonietta Di Cristina; Maria Rosaria Pipitone; Jan Balzarini; Roberto Gambari; Lampronti Ilaria; Roberto Saletti; Andrea Brancale; Ernest Hamel

Molecules that target microtubules have an important role in the treatment of cancer. A new class of inhibitors of tubulin polymerization based on the 2-(3,4,5-trimethoxybenzoyl)-2-dimethylamino-benzo[b]furan molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. The most promising compound in this series was 2-(3,4,5-trimethoxybenzoyl)-3-dimethylamino-6-methoxy-benzo[b]furan, which inhibits cancer cell growth at nanomolar concentrations and interacts strongly with tubulin by binding to the colchicine site.


Bioorganic & Medicinal Chemistry Letters | 2008

Synthesis and biological evaluation of 2-amino-3-(3′,4′,5′-trimethoxybenzoyl)-6-substituted-4,5,6,7-tetrahydrothieno[2,3-c]pyridine derivatives as antimitotic agents and inhibitors of tubulin polymerization

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Olga Cruz-Lopez; Carlota Lopez Cara; Manlio Tolomeo; Stefania Grimaudo; Antonietta Di Cristina; Maria Rosa Pipitone; Jan Balzarini; Sahar Kandil; Andrea Brancale; Taradas Sarkar; Ernest Hamel

Microtubules are among the most successful targets of compounds potentially useful for cancer therapy. A new series of inhibitors of tubulin polymerization based on the 2-amino-3-(3,4,5-trimethoxybenzoyl)-4,5,6,7-tetrahydrothieno[b]pyridine molecular skeleton was synthesized and evaluated for antiproliferative activity, inhibition of tubulin polymerization, and cell cycle effects. The most promising compound in this series was 2-amino-3-(3,4,5-trimethoxybenzoyl)-6-methoxycarbonyl-4,5,6,7-tetrahydrothieno[b]pyridine, which inhibits cancer cell growth with IC(50)-values ranging from 25 to 90 nM against a panel of four cancer cell lines, and interacts strongly with tubulin by binding to the colchicine site. In this series of N(6)-carbamate derivatives, any further increase in the length and in the size of the alkyl chain resulted in reduced activity.


Journal of Medicinal Chemistry | 2012

Synthesis and biological evaluation of 2-amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]-5-substituted-thiophenes. effect of the 5-modification on allosteric enhancer activity at the A1 adenosine receptor.

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Carlota Lopez Cara; Olga Cruz-Lopez; Maria Kimatrai Salvador; Delia Preti; Mojgan Aghazadeh Tabrizi; Allan R. Moorman; Fabrizio Vincenzi; Pier Andrea Borea; Katia Varani

We have recently reported a detailed structure-activity relationship study around a wide series of 2-amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]thiophene derivatives as potent allosteric enhancers of the A(1) adenosine receptor. In the current study, we have continued to explore the potential of these molecules by synthesizing of a novel series of analogues that share a common 2-amino-3-(4-chlorobenzoyl)thiophene nucleus. Modifications were focused on varying the nature and the position of electron-withdrawing or electron-releasing groups on the phenyl of an arylpiperazine moiety attached at the 4-position of the thiophene ring by a methylene chain, combined with the presence of small alkyl groups (methyl or ethyl), bromine, or aryl moieties at the thiophene C-5 position. In this series of compounds, substitution at the 5-position had a fundamental effect on activity, with the 5-aryl group contributing additively to the allosteric enhancer activity. The thiophene C-5 aryl derivatives 4ad, 4ak, and 4al were the most active compounds in binding and functional experiments.


Bioorganic & Medicinal Chemistry | 2014

Synthesis and biological evaluation of novel 2-amino-3-aroyl-4-neopentyl-5-substituted thiophene derivatives as allosteric enhancers of the A1 adenosine receptor

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Olga Cruz-Lopez; Carlota Lopez Cara; Giulia Saponaro; Delia Preti; Mojgan Aghazadeh Tabrizi; Stefania Baraldi; Allan R. Moorman; Fabrizio Vincenzi; Pier Andrea Borea; Katia Varani

2-Amino-3-benzoyl thiophenes have been widely reported to act as allosteric enhancers at the A1 adenosine receptor. Their activity can be increased considerably by appropriate substitutions at the 4- and 5-positions of the thiophene ring. Substituent size at the thiophene C-4 position seemed to be a factor closely related to activity, with the 4-neopentyl (2,2-dimethylpropyl) substitution showing the greatest enhanced activity. A wide series of 2-amino-3-aroyl-4-neopentylthiophene derivatives with general structure 3, characterized by the presence of different substituents (bromine, aryl and heteroaryl) at the 5-position of the thiophene ring, have been identified as potent AEs at the A1AR. With only one exception, all of the synthesized compounds proved to be superior to the reference compound PD 81,723 in a functional assay. Derivatives 3p, 3u, 3am, 3ap and 3ar were the most active compounds in binding (saturation and competition) and functional cAMP studies, being able to potentiate agonist [(3)H]CCPA binding to the A1 receptor.


Bioorganic & Medicinal Chemistry | 2012

Structure–activity relationships of 2-amino-3-aroyl-4-[(4-arylpiperazin-1-yl)methyl]thiophenes. Part 2: Probing the influence of diverse substituents at the phenyl of the arylpiperazine moiety on allosteric enhancer activity at the A1 adenosine receptor

Romeo Romagnoli; Pier Giovanni Baraldi; Maria Dora Carrion; Carlota Lopez Cara; Olga Cruz-Lopez; Maria Kimatrai Salvador; Delia Preti; Mojgan Aghazadeh Tabrizi; John C. Shryock; Allan R. Moorman; Fabrizio Vincenzi; Katia Varani; Pier Andrea Borea

In a preliminary article, we reported the potent allosteric enhancer activity at the A(1) adenosine receptor of a small series of 2-amino-3-(4-chlorobenzoyl)-4-[4-(aryl)piperazin-1-yl)methyl]thiophene derivatives bearing electron-withdrawing or electron-releasing groups at the para-position of the phenylpiperazine moiety. In the present study, we report the development of the compounds previously studied by modifying both the number and position of substituents on the phenylpiperazine moiety, aimed at establishing a structure-activity relationship identifying additional compounds with improved activity. The nature and the position of substituents on the phenyl ring tethered to the piperazine seemed to exert a fundamental influence on the allosteric enhancer activity, with the 3,4-difluoro 4i, 3-chloro-4-fluoro 4o, and 4-trifluoromethoxy 4ak derivatives being the most active compounds in binding (saturation and competition experiments) and functional cAMP studies. This study shows that it is also possible to obtain a good separation between allosteric enhancement and antagonistic activity at the A(1) adenosine receptor.

Collaboration


Dive into the Maria Dora Carrion's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Balzarini

Rega Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ernest Hamel

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge