Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria E. Gonzalez is active.

Publication


Featured researches published by Maria E. Gonzalez.


Oncogene | 2009

Downregulation of EZH2 decreases growth of estrogen receptor-negative invasive breast carcinoma and requires BRCA1

Maria E. Gonzalez; Xin Li; Kathy Toy; Matthew L. DuPrie; Alejandra C. Ventura; Mousumi Banerjee; M Ljungman; Sofia D. Merajver; Celina G. Kleer

Increased levels of enhancer of zeste homolog 2 (EZH2), a critical regulator of cellular memory, are associated with negative estrogen receptor (ER) expression and disease progression in breast cancer. High levels of EZH2 signal the presence of metastasis and poor outcome in breast cancer patients. To test the hypothesis that deregulation of EZH2 contributes to ER-negative breast cancer progression, EZH2 expression was inhibited in ER-negative breast cancer cells MDA-MB-231 and CAL51 using a lentivirus system. EZH2 knockdown decreased proliferation and delayed the G2/M cell-cycle transition, although not affecting apoptosis. In vivo, EZH2 downregulation significantly decreased breast xenograft growth and improved survival. EZH2 knockdown upregulated BRCA1 protein. Of note, BRCA1 knockdown was sufficient to rescue the effects of EZH2 downregulation on proliferation, G2/M arrest, and on the levels of hyperphosphorylated mitotic Cdc25C and Cyclin B1 proteins, crucial for entry into mitosis. Invasive ER-negative breast carcinomas show significant overexpression of EZH2 and downregulation of BRCA1 proteins. Taken together, we show that EZH2 is important in ER-negative breast cancer growth in vivo and in vitro, and that BRCA1 is required for the proliferative effects of EZH2. Blockade of EZH2 may provide a prime target to prevent and/or halt ER-negative breast cancer progression.


Proceedings of the National Academy of Sciences of the United States of America | 2014

EZH2 expands breast stem cells through activation of NOTCH1 signaling

Maria E. Gonzalez; Heather M. Moore; Xin Li; Kathy Toy; Wei Huang; Michael S. Sabel; Kelley M. Kidwell; Celina G. Kleer

Significance Triple-negative breast cancers comprise 10% of invasive breast carcinomas but are responsible for a disproportionate number of deaths and remain poorly understood. Unfortunately, current therapies are only weakly effective, and the median disease-free survival is 4 y among young women. Clinical studies support the relevance of Enhancer of Zeste Homolog 2 (EZH2) overexpression to the progression of triple-negative breast carcinomas. Our study shows that EZH2 acts as an activator of the NOTCH1 promoter and signaling to expand the stem cell pool, leading to accelerated breast cancer initiation and growth. We discovered that this function is independent of EZH2 histone methyltransferase activity and of its Polycomb Repressive Complex 2-binding partners, paving the way for novel therapeutic strategies. Breast cancer is the second-leading cause of cancer-related deaths in women, but the details of how it begins remain elusive. Increasing evidence supports the association of aggressive triple-negative (TN) breast cancer with heightened expression of the Polycomb group protein Enhancer of Zeste Homolog 2 (EZH2) and increased tumor-initiating cells (TICs). However, mechanistic links between EZH2 and TICs are unclear, and direct demonstration of a tumorigenic function of EZH2 in vivo is lacking. Here, we identify an unrecognized EZH2/NOTCH1 axis that controls breast TICs in TN breast carcinomas. EZH2 overexpression increases NOTCH1 expression and signaling, and inhibition of NOTCH1 activity prevents EZH2-mediated stem cell expansion in nontumorigenic breast cells. We uncover a unique role of EZH2 in activating, rather than repressing, NOTCH1 signaling through binding to the NOTCH1 promoter in TN breast cancer cells. EZH2 binding is independent of its catalytic histone H3 lysine 27 methyltransferase activity and of the Polycomb Repressive Complex 2 but corresponds instead to transcriptional activation marks. In vivo, EZH2 knockdown decreases the onset and volume of xenografts derived from TN breast TICs. Conversely, transgenic EZH2 overexpression accelerates mammary tumor initiation and increases NOTCH1 activation in mouse mammary tumor virus-neu mice. Consonant with these findings, in clinical samples, high levels of EZH2 are significantly associated with activated NOTCH1 protein and increased TICs in TN invasive carcinomas. These data reveal a functional and mechanistic link between EZH2 levels, NOTCH1 signaling activation, and TICs, and provide previously unidentified evidence that EZH2 enhances breast cancer initiation.


American Journal of Pathology | 2009

Targeted Overexpression of EZH2 in the Mammary Gland Disrupts Ductal Morphogenesis and Causes Epithelial Hyperplasia

Xin Li; Maria E. Gonzalez; Katherine Toy; Tracey M. Filzen; Sofia D. Merajver; Celina G. Kleer

The Polycomb group protein enhancer of zeste homolog 2 (EZH2), which has roles during development of numerous tissues, is a critical regulator of cell type identity. Overexpression of EZH2 has been detected in invasive breast carcinoma tissue samples and is observed in human breast tissue samples of morphologically normal lobules up to 12 years before the development of breast cancer. The function of EZH2 during preneoplastic progression in the mammary gland is unknown. To investigate the role of EZH2 in the mammary gland, we targeted the expression of EZH2 to mammary epithelial cells using the mouse mammary tumor virus long terminal repeat. EZH2 overexpression resulted in aberrant terminal end bud architecture. By the age of 4 months, 100% of female mouse mammary tumor virus-EZH2 virgin mice developed intraductal epithelial hyperplasia resembling the human counterpart accompanied by premature differentiation of ductal epithelial cells and up-regulation of the luminal marker GATA-3. In addition, remodeling of the mammary gland after parturition was impaired and EZH2 overexpression caused delayed involution. Mechanistically, we found that EZH2 physically interacts with beta-catenin, inducing beta-catenin nuclear accumulation in mammary epithelial cells and activating Wnt/beta-catenin signaling. The biological significance of these data to human hyperplasias is demonstrated by EZH2 up-regulation and colocalization with beta-catenin in human intraductal epithelial hyperplasia, the earliest histologically identifiable precursor of breast carcinoma.


Cancer Research | 2007

High SEPT9_v1 Expression in Human Breast Cancer Cells Is Associated with Oncogenic Phenotypes

Maria E. Gonzalez; Esther A. Peterson; Lisa M. Privette; Janice L. Loffreda-Wren; Linda M. Kalikin; Elizabeth M. Petty

Altered expression of the human septin gene, SEPT9, and its murine homologue, Sept9, has been implicated in neoplasia. However, their role(s) in oncogenesis remains poorly understood. We found amplification of SEPT9 in 67% of breast cancer cells (BCC) when compared with immortalized human mammary epithelial cells (IHMEC) as well as high levels of SEPT9 expression in the majority (61%) of the BCCs studied, unlike IHMECs. Expression profiling of variant SEPT9 transcripts and translated products revealed that high expression of the variant, SEPT9_v1, in contrast to other variants, was widespread in BCCs (55% of the BCCs) but not in IHMECs. High expression of SEPT9_v1 was also observed in primary breast cancer samples by immunohistochemical studies. We subsequently examined the phenotypic consequences of SEPT9_v1 expression in human breast cells. Retroviral expression of SEPT9_v1 in IHMEC cell culture models showed that SEPT9_v1 accelerated growth kinetics, stimulated cell motility, promoted invasion in Matrigel Transwell assays, increased genomic instability with the development of aneuploidy, and stimulated morphologic changes. Significant cytokinesis defects and disruption of tubulin microfilaments were also observed by immunofluorescence when SEPT9_v1 was ectopically expressed in IHMECs. Furthermore, SEPT9_v1 markedly enhanced neoplastic transformation in Hs578T cells, a BCC with no endogenous expression of the SEPT9_v1 isoform. Small interfering RNA-mediated and short hairpin RNA-mediated inhibition of SEPT9_v1 expression in two BCCs with high levels of endogenous SEPT9_v1 expression inhibited neoplastic growth properties of the cells. Taken together, our findings suggest that increased SEPT9_v1 expression contributes to the malignant pathogenesis of some breast tumors.


Cancer Research | 2011

Histone Methyltransferase EZH2 Induces Akt-Dependent Genomic Instability and BRCA1 Inhibition in Breast Cancer

Maria E. Gonzalez; Matthew L. DuPrie; Heather Krueger; Sofia D. Merajver; Alejandra C. Ventura; Kathy Toy; Celina G. Kleer

Increased levels of EZH2, a critical regulator of cellular memory, signal the presence of metastasis and poor outcome in breast cancer patients. High levels of EZH2 are associated with nuclear pleomorphism, lack of estrogen receptor expression, and decreased nuclear levels of BRCA1 tumor suppressor protein in invasive breast carcinomas. The mechanism by which EZH2 overexpression promotes the growth of poorly differentiated invasive carcinomas remains to be defined. Here, we show that EZH2 controls the intracellular localization of BRCA1 protein. Conditional doxycycline-induced upregulation of EZH2 in benign mammary epithelial cells results in nuclear export of BRCA1 protein, aberrant mitoses with extra centrosomes, and genomic instability. EZH2 inhibition in CAL51 breast cancer cells induces BRCA1 nuclear localization and rescues defects in ploidy and mitosis. Mechanistically, EZH2 overexpression is sufficient for activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway specifically through activation of Akt isoform 1. EZH2-induced BRCA1 nuclear export, aneuploidy, and mitotic defects were prevented by treatment with the PI3K inhibitors LY294002 or wortmannin. Targeted inhibition of Akt-1, Akt-2, and Akt-3 isoforms revealed that the EZH2-induced phenotype requires specific activation of Akt-1. The relevance of our studies to human breast cancer is highlighted by the finding that high EZH2 protein levels are associated with upregulated expression of phospho-Akt-1 (Ser473) and decreased nuclear expression of phospho-BRCA1 (Ser1423) in 39% of invasive breast carcinomas. These results enable us to pinpoint one mechanism by which EZH2 regulates BRCA1 expression and genomic stability mediated by the PI3K/Akt-1 pathway.


Cancer Research | 2007

Altered Expression of the Early Mitotic Checkpoint Protein, CHFR, in Breast Cancers: Implications for Tumor Suppression

Lisa M. Privette; Maria E. Gonzalez; Lei Ding; Celina G. Kleer; Elizabeth M. Petty

Checkpoint with FHA and Ring Finger (CHFR) is hypothesized to mediate a delay in cell cycle progression early in mitosis in response to microtubule stress, independent of the spindle assembly checkpoint. As a potential regulator of cell cycle progression, CHFR naturally becomes an interesting target for understanding cancer cells. In recent years, there has been increasing evidence supporting the role of CHFR as a tumor suppressor, most of which report loss of expression, occasionally due to promoter hypermethylation, in cancers compared with patient-matched normal tissues. We studied both a panel of breast cancer cell lines as well as primary tissue samples from breast cancer patients to investigate CHFR as a relevant tumor suppressor in breast cancer and to determine whether CHFR expression was associated with clinical and pathologic variables. We report that 41% of cell lines and 36% of patient samples showed low or negative CHFR protein expression or staining. In addition, lack of CHFR detection was associated with increased tumor size and weakly correlated with estrogen receptor-negative tumors from patients. To study the effects of low CHFR expression in vitro, we stably expressed a short hairpin RNA construct targeting CHFR in two lines of immortalized human mammary epithelial cells. Notably, decreased CHFR expression resulted in the acquisition of many phenotypes associated with malignant progression, including accelerated growth rates, higher mitotic index, enhanced invasiveness, increased motility, greater aneuploidy, and amplified colony formation in soft agar, further supporting the role of CHFR as a tumor suppressor in breast cancer.


Cellular Signalling | 2009

Up-regulation of SEPT9_v1 stabilizes c-Jun-N-terminal kinase and contributes to its pro-proliferative activity in mammary epithelial cells.

Maria E. Gonzalez; Olga Makarova; Esther A. Peterson; Lisa M. Privette; Elizabeth M. Petty

SEPT9_v1, the largest transcript of the septin gene family member, SEPT9, encodes a septin isoform implicated in the tumorigenic transformation of mammary epithelial cells. High levels of SEPT9_v1 expression also have been observed in both breast cancer cell lines, primary breast cancers as well as other solid tumor malignancies. We found a novel interaction between SEPT9_v1 and the c-Jun-N-terminal kinase (JNK), a mitogen-activated protein kinase important in cellular stress responses, cell proliferation, and cell survival. We found that up-regulation of SEPT9_v1 stabilizes JNK by delaying its degradation, thereby activating the JNK transcriptome. C-jun kinase assays in mammary epithelial cells expressing SEPT9_v1, compared to controls, exhibited increased JNK/c-Jun transcriptional activity. This increase was associated with increased levels of cyclin D1, a critical component of the proliferative response required for progression through G(1) of the cell cycle in many cell types. These findings demonstrate the first link between a septin protein and the JNK signaling pathway. Importantly, it suggests a novel functional role of SEPT9_v1 in driving cellular proliferation of mammary epithelial cells, a hallmark feature of oncogenesis that is directly relevant to breast cancer.


Cancer Research | 2010

Blockade of CCN6 (WISP3) activates growth factor-independent survival and resistance to anoikis in human mammary epithelial cells.

Wei Huang; Maria E. Gonzalez; Kathy Toy; Mousumi Banerjee; Celina G. Kleer

CCN6 is a secreted cysteine-rich matricellular protein (36.9 kDa) that exerts growth-inhibitory functions in breast cancer. Reduction or loss of CCN6 protein has been reported in invasive carcinomas of the breast with lymph node metastasis and in inflammatory breast cancer. However, the mechanism by which CCN6 loss promotes breast cancer growth remains to be defined. In the present study, we developed lentiviral-mediated short hairpin RNA CCN6 knockdown (KD) in nontumorigenic mammary epithelial cells MCF10A and HME. We discovered that CCN6 KD protects mammary epithelial cells from apoptosis and activates growth factor-independent survival. In the absence of exogenous growth factors, CCN6 KD was able to promote growth under anchorage-independent conditions and triggered resistance to detachment-induced cell death (anoikis). On serum starvation, CCN6 KD was sufficient for activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Growth factor-independent cell survival was stunted in CCN6 KD cells when treated with either human recombinant CCN6 protein or the PI3K inhibitor LY294002. Targeted inhibition of Akt isoforms revealed that the survival advantage rendered by CCN6 KD requires specific activation of Akt-1. The relevance of our studies to human breast cancer is highlighted by the finding that low CCN6 protein levels are associated with upregulated expression of phospho-Akt-1 (Ser(473)) in 21% of invasive breast carcinomas. These results enable us to pinpoint one mechanism by which CCN6 controls survival of breast cells mediated by the PI3K/Akt-1 pathway.


Nature Communications | 2017

Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka

Raphaël Paris; Juan J. Coello Bravo; Maria E. Gonzalez; Karim Kelfoun; F. Nauret

Giant mass failures of oceanic shield volcanoes that generate tsunamis potentially represent a high-magnitude but low-frequency hazard, and it is actually difficult to infer the mechanisms and dynamics controlling them. Here we document tsunami deposits at high elevation (up to 132 m) on the north-western slopes of Tenerife, Canary Islands, as a new evidence of megatsunami generated by volcano flank failure. Analyses of the tsunami deposits demonstrate that two main tsunamis impacted the coasts of Tenerife 170 kyr ago. The first tsunami was generated during the submarine stage of a retrogressive failure of the northern flank of the island, whereas the second one followed the debris avalanche of the subaerial edifice and incorporated pumices from an on-going ignimbrite-forming eruption. Coupling between a massive retrogressive flank failure and a large explosive eruption represents a new type of volcano-tectonic event on oceanic shield volcanoes and a new hazard scenario.


Oncotarget | 2016

The matricellular protein CCN6 (WISP3) decreases Notch1 and suppresses breast cancer initiating cells

Wei Huang; Emily E. Martin; Boris Burman; Maria E. Gonzalez; Celina G. Kleer

Increasing evidence supports that the epithelial to mesenchymal transition (EMT) in breast cancer cells generates tumor initiating cells (TICs) but the contribution of the tumor microenvironment to these programs needs further elucidation. CCN6 (WISP3) is a secreted matrix-associated protein (36.9 kDa) of the CCN family (named after CTGF, Cyr61 and Nov) that is reduced or lost in invasive carcinomas of the breast with lymph node metastasis and in inflammatory breast cancer. CCN6 exerts breast cancer growth and invasion inhibitory functions, but the mechanisms remain to be defined. In the present study we discovered that ectopic CCN6 overexpression in triple negative (TN) breast cancer cells and in cells derived from patients is sufficient to induce a mesenchymal to epithelial transition (MET) and to reduce TICs. In vivo, CCN6 overexpression in the TIC population of MDA-MB-231 cells delayed tumor initiation, reduced tumor volume, and inhibited the development of metastasis. Our studies reveal a novel CCN6/Slug signaling axis that regulates Notch1 signaling activation, epithelial cell phenotype and breast TICs, which requires the conserved thrombospondin type 1 (TSP1) motif of CCN6. The relevance of these data to human breast cancer is highlighted by the finding that CCN6 protein levels are inversely correlated with Notch1 intracellular activated form (NICD1) in 69.5% of invasive breast carcinomas. These results demonstrate that CCN6 regulates epithelial and mesenchymal states transition and TIC programs, and pinpoint one responsible mechanism.

Collaboration


Dive into the Maria E. Gonzalez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kathy Toy

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

Xin Li

New York University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Talha Anwar

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arjun Lama

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge