Maria E. Moreno-Fernandez
University of Cincinnati Academic Health Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria E. Moreno-Fernandez.
Blood | 2011
Maria E. Moreno-Fernandez; César Mauricio Rueda; Laura K. Rusie; Claire A. Chougnet
We hypothesized that regulatory T cells (Tregs) could play a beneficial role during HIV infection by controlling HIV replication in conventional T cells (Tcons). Purified Tregs and Tcons from healthy donors were activated separately. Tcons were infected with the X4 or R5 HIV strains and cultured with or without autologous Tregs. Coculture of Tcons and Tregs resulted in a dose-dependent inhibition of Tcon infection, which was significant when a 1:1 Treg:Tcon ratio was used. Treg suppression of HIV infection was largely mediated by contact-dependent mechanisms. Blockage of cytotoxic T-lymphocyte-associated antigen-4 did not significantly reduce Treg function. In contrast, Tregs acted through cAMP-dependent mechanisms, because the decrease of cAMP levels in Tregs, the blockade of gap junction formation between Tregs and Tcons, the blockage of CD39 activity, and the blockage of protein kinase A in Tcons all abolished Treg-mediated suppression of HIV replication. Our data suggest a complex role for Tregs during HIV infection. Although Tregs inhibit specific immune responses, their inhibition of HIV replication in Tcons may play a beneficial role, particularly during early HIV infection, when the effector immune cells are not yet activated. Such a protective role of Tregs could have a profound impact on infection outcome.
Journal of Virology | 2009
Maria E. Moreno-Fernandez; Wildeman Zapata; Jason T. Blackard; Genoveffa Franchini; Claire A. Chougnet
ABSTRACT Regulatory T cells (Treg) are a subpopulation of CD4+ T cells characterized by the suppressive activity they exert on effector immune responses, including human immunodeficiency virus (HIV)-specific immune responses. Because Treg express CXCR4 and CCR5, they represent potential targets for HIV; however, Treg susceptibility to HIV infection is still unclear. We therefore performed an extensive study of Treg susceptibility to HIV, using lab strains and primary isolates with either CCR5 or CXCR4 tropism. Furthermore, we quantified HIV infection at early and late time points of the virus life cycle. We found that Treg were clearly susceptible to HIV infection. Circulating Treg were not preferentially infected with HIV compared to effector T cells (Teff) in vivo. Conversely, in vitro infection with either CCR5-using (R5) or CXCR4-using (X4) viruses occurred with different dynamics. For instance, HIV infection by R5 viruses (lab strains and primary isolates) resulted in lower levels of infection in Treg compared with Teff at both early and late time points. In contrast, X4 viruses induced higher levels of infection in Treg compared to Teff at early time points, but this difference disappeared at the late time points of the virus life cycle. Our results suggest that the relative susceptibility of Treg to HIV infection compared to Teff varies, depending on both viral and host factors. These variations may play an important role in HIV pathogenesis.
Journal of Virology | 2012
Maria E. Moreno-Fernandez; Pietro Presicce; Claire A. Chougnet
ABSTRACT Regulatory T cells (Tregs) play a pivotal role in the maintenance of tolerance as well as in the control of immune activation, particularly during chronic infections. In the setting of HIV infection, the majority of studies have reported an increase in Treg frequency but a decrease in absolute number in all immune compartments of HIV-infected individuals. Several nonexclusive mechanisms have been postulated to explain this preferential Treg accumulation, including peripheral survival, increased proliferation, increased peripheral conversion, and tissue redistribution. The role played by Tregs during HIV infection is still poorly understood, as two opposing hypotheses have been proposed. A detrimental role of Tregs during HIV infection was suggested based on the evidence that Tregs suppress virus-specific immune responses. Conversely, Tregs could be beneficial by limiting immune activation, thus controlling the availability of HIV targets as well as preventing immune-based pathologies. Despite the technical difficulties, getting a better understanding of the mechanisms regulating Treg dynamics remains important, as it will help determine whether we can successfully manipulate Treg function or number to the advantage of the infected host. The aim of this review is thus to discuss the recent findings on Treg homeostasis and function in the setting of HIV infection.
Journal of Immunology | 2011
Sema Kurtulus; Pulak Tripathi; Maria E. Moreno-Fernandez; Allyson Sholl; Jonathan D. Katz; H. Leighton Grimes; David A. Hildeman
As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate.
Nature Medicine | 2017
Daniel A. Giles; Maria E. Moreno-Fernandez; Traci E. Stankiewicz; Simon Graspeuntner; Monica Cappelletti; David Wu; Rajib Mukherjee; Calvin C. Chan; Matthew J. Lawson; Jared Klarquist; Annika Sünderhauf; Samir Softic; C. Ronald Kahn; Kerstin Stemmer; Yoichiro Iwakura; Bruce J. Aronow; Rebekah Karns; Kris A. Steinbrecher; Christopher L. Karp; Rachel Sheridan; Shiva Kumar Shanmukhappa; Damien Reynaud; David B Haslam; Christian Sina; Jan Rupp; Simon P. Hogan; Senad Divanovic
Nonalcoholic fatty liver disease (NAFLD), a common prelude to cirrhosis and hepatocellular carcinoma, is the most common chronic liver disease worldwide. Defining the molecular mechanisms underlying the pathogenesis of NAFLD has been hampered by a lack of animal models that closely recapitulate the severe end of the disease spectrum in humans, including bridging hepatic fibrosis. Here we demonstrate that a novel experimental model employing thermoneutral housing, as opposed to standard housing, resulted in lower stress-driven production of corticosterone, augmented mouse proinflammatory immune responses and markedly exacerbated high-fat diet (HFD)-induced NAFLD pathogenesis. Disease exacerbation at thermoneutrality was conserved across multiple mouse strains and was associated with augmented intestinal permeability, an altered microbiome and activation of inflammatory pathways that are associated with the disease in humans. Depletion of Gram-negative microbiota, hematopoietic cell deletion of Toll-like receptor 4 (TLR4) and inactivation of the IL-17 axis resulted in altered immune responsiveness and protection from thermoneutral-housing-driven NAFLD amplification. Finally, female mice, typically resistant to HFD-induced obesity and NAFLD, develop full disease characteristics at thermoneutrality. Thus, thermoneutral housing provides a sex-independent model of exacerbated NAFLD in mice and represents a novel approach for interrogation of the cellular and molecular mechanisms underlying disease pathogenesis.
Journal of Innate Immunity | 2014
Rosa Maria Salazar Gonzalez; Hesham Shehata; Michael J. O'Connell; Yanfen Yang; Maria E. Moreno-Fernandez; Claire A. Chougnet; Julio Aliberti
Up to a third of the worlds population is infected with Toxoplasma gondii. Natural infection in humans can be life threatening during pregnancy and in immunocompromised individuals. Toll-like receptor (TLR) 11 is the mouse innate sensor that recognizes T. gondii profilin; however, in humans the TLR11 gene leads to transcription of no functional protein. Herein, by using a multiple sequence alignment phylogenetic analysis program between human and mouse species, we found that human TLR5 seems to be the evolutionarily closest member of the TLR gene family to mouse tlr11. We therefore asked whether human TLR5 could mediate IL-6, IL-8 and IL-12p70 production in response to the T. gondii profilin. We found that this was the case both in human cell lines as well as peripheral blood monocytes. Moreover, TLR5 neutralization and gene silencing mediated specific ablation of cytokine production after profilin exposure. Finally, peripheral blood monocytes carrying the TLR5 R392X mutation failed to produce cytokines in response to stimulation with profilin. Taken together, the results presented herein reveal a previously unappreciated cross-recognition of a relevant human pathogen-derived pathogen-associated molecular pattern.
Cytometry Part A | 2010
Pietro Presicce; Maria E. Moreno-Fernandez; Celine S. Lages; Kris Orsborn; Claire A. Chougnet
FOXP3 is a key transcription factor expressed by regulatory T cells (Treg cells). However, differences in staining and analysis protocols have led to conflicting results. Moreover, the transient upregulation of FOXP3 that follows activation in non‐Treg cells renders the interpretation of FOXP3 data more difficult in humans than in mice. Human peripheral blood mononuclear cells (PBMCs), isolated CD25− or CD25+CD4+ T cells were stained with three different anti‐FOXP3 clones (PCH101, 206D, and 259D) alone or in combination, and using different permeabilization methods. FOXP3 expression was evaluated following T cell activation by several pathways. Gating based on a population that did not express FOXP3 (such as CD3−CD4− T cells) allowed for the optimal characterization of Treg cells. The 206D clone detected a lower percentage of cells than PCH101 or 259D. In contrast, 259D stained a population of activated T cells that PCH101 did not. Staining with two clones together consistently increased the proportion of FOXP3+ cells. However, it is likely that only the double positive cells are Treg cells, as they expressed the highest CD25 and lowest CD127 levels. Our results emphasize that the choice of staining protocol leads to very different results concerning the frequency of Treg cells in humans. A more consistent identification of these cells will improve the knowledge of their biology, particularly during disease processes.
PLOS ONE | 2016
Daniel A. Giles; Maria E. Moreno-Fernandez; Traci E. Stankiewicz; Monica Cappelletti; Stacey S. Huppert; Yoichiro Iwakura; Chen Dong; Shiva K. Shanmukhappa; Senad Divanovic
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. While it is well-accepted that inflammation is central to NAFLD pathogenesis, the immune pathway(s) orchestrating disease progression are poorly defined. Notably, IL-17RA signaling, via IL-17A, plays an important role in obesity-driven NAFLD pathogenesis. However, the role of the IL-17F, another IL-17RA ligand, in NAFLD pathogenesis has not been examined. Further, the cell types expressing IL-17RA and producing IL-17RA ligands in the pathogenesis of NAFLD have not been defined. Here, IL-17RA-/-, IL-17A-/-, IL-17F-/- and wild-type (WT) mice were fed either standard chow diet or methionine and choline deficient diet (MCDD)—a diet known to induce steatosis and hepatic inflammation through beta-oxidation dysfunction—and hepatic inflammation and NAFLD progression were subsequently quantified. MCDD feeding augmented hepatic IL-17RA expression and significantly increased hepatic infiltration of macrophages and IL-17A and IL-17F producing CD4+ and CD8+ T cells in WT mice. In contrast, IL-17RA-/-, IL-17A-/-, and IL-17F-/- mice, despite increased steatosis, exhibited significant protection from hepatocellular damage compared to WT controls. Protection from hepatocellular damage correlated with decreased levels of hepatic T-cell and macrophage infiltration and decreased expression of inflammatory mediators associated with NAFLD. In sum, our results indicate that the IL-17 axis also plays a role in a MCDD-induced model of NAFLD pathogenesis. Further, we show for the first time that IL-17F, and not only IL-17A, plays an important role in NAFLD driven inflammation.
Virology Journal | 2012
Ling Kong; Walter Cardona Maya; Maria E. Moreno-Fernandez; Gang Ma; Mohamed T. Shata; Kenneth E. Sherman; Claire A. Chougnet; Jason T. Blackard
BackgroundThere are only limited data on whether HIV infection occurs within the liver; therefore, we explored early and late stages of the HIV life cycle in two hepatocyte cell lines – Huh7.5 and Huh7.5JFH1 – as well as in primary human hepatocytes.ResultsIntegrated HIV DNA was detected in Huh7.5 and Huh7.5JFH1 cells, as well as in primary hepatocytes, and was inhibited by the integrase inhibitor raltegravir in a dose-dependent manner. HIV p24 protein was also detected in cell culture supernatants at days 1, 3, 5, and 7 post-infection and was inhibited by AZT, although levels were modest compared to those in a lymphocyte cell line. Culture supernatants from HIV-infected hepatocytes were capable of infecting a non-hepatic HIV indicator cell line.ConclusionsThese results indicating low-level HIV replication in hepatoctyes in vitro complement evidence suggesting that HIV has deleterious effects on the liver in vivo.
European Journal of Immunology | 2015
Cesar M. Rueda; Maria E. Moreno-Fernandez; Courtney M. Jackson; Suhas G. Kallapur; Alan H. Jobe; Claire A. Chougnet
Regulatory T cells (Treg cells) limit contact between dendritic cells (DCs) and conventional T cells (Tcons), decreasing the formation of aggregates as well as down‐modulating the expression of co‐stimulatory molecules by DCs, thus decreasing DC immunogenicity and abrogating T‐cell activation. Despite the importance of this Treg‐cell function, the capacity of Treg cells from term and preterm neonates to suppress DCs, and the suppressive mechanisms they use, are still undefined. We found that, relative to adult Treg cells, activated Treg cells from human neonates expressed lower FOXP3 and CTLA‐4, but contained higher levels of cAMP. We developed an in vitro model in which Treg function was measured at a physiological ratio of 1 Treg for 10 Tcon and 1 monocyte‐derived DC, as Treg target. Term and preterm Treg cells failed to suppress the formation of DC‐Tcon aggregates, in contrast to naïve and memory Treg cells from adults. However, neonatal Treg cells diminished DC and Tcon activation as well as actin polymerization at the immunological synapses. In addition, CTLA‐4 and cAMP were the main suppressive molecules used by neonatal Treg. Altogether, both preterm and term neonatal Treg cells appear less functional than adult Treg cells, and this defect is consistent with the general impairment of CD4 cell function in newborns.