Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria E. Rodriguez-Ruiz is active.

Publication


Featured researches published by Maria E. Rodriguez-Ruiz.


Cancer Discovery | 2016

Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti–PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells

Alfonso R. Sánchez-Paulete; Francisco J. Cueto; María Martínez-López; Sara Labiano; Aizea Morales-Kastresana; Maria E. Rodriguez-Ruiz; Maria Jure-Kunkel; Arantza Azpilikueta; María Ángela Aznar; Jose I. Quetglas; David Sancho; Ignacio Melero

UNLABELLED Weak and ineffective antitumor cytotoxic T lymphocyte (CTL) responses can be rescued by immunomodulatory mAbs targeting PD-1 or CD137. Using Batf3(-/-) mice, which are defective for cross-presentation of cell-associated antigens, we show that BATF3-dependent dendritic cells (DC) are essential for the response to therapy with anti-CD137 or anti-PD-1 mAbs. Batf3(-/-) mice failed to prime an endogenous CTL-mediated immune response toward tumor-associated antigens, including neoantigens. As a result, the immunomodulatory mAbs could not amplify any therapeutically functional immune response in these mice. Moreover, administration of systemic sFLT3L and local poly-ICLC enhanced DC-mediated cross-priming and synergized with anti-CD137- and anti-PD-1-mediated immunostimulation in tumor therapy against B16-ovalbumin-derived melanomas, whereas this function was lost in Batf3(-/-) mice. These experiments show that cross-priming of tumor antigens by FLT3L- and BATF3-dependent DCs is crucial to the efficacy of immunostimulatory mAbs and represents a very attractive point of intervention to enhance their clinical antitumor effects. SIGNIFICANCE Immunotherapy with immunostimulatory mAbs is currently achieving durable clinical responses in different types of cancer. We show that cross-priming of tumor antigens by BATF3-dependent DCs is a key limiting factor that can be exploited to enhance the antitumor efficacy of anti-PD-1 and anti-CD137 immunostimulatory mAbs.


Seminars in Oncology | 2015

Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS.

Miguel F. Sanmamed; Fernando Pastor; Alfonso Rodriguez; Jose Luis Perez-Gracia; Maria E. Rodriguez-Ruiz; Maria Jure-Kunkel; Ignacio Melero

T and natural killer (NK) lymphocytes are considered the main effector players in the immune response against tumors. Full activation of T and NK lymphocytes requires the coordinated participation of several surface receptors that meet their cognate ligands through structured transient cell-to-cell interactions known as immune synapses. In the case of T cells, the main route of stimulation is driven by antigens as recognized in the form of short polypeptides associated with major histocompatibility complex (MHC) antigen-presenting molecules. However, the functional outcome of T-cell stimulation towards clonal expansion and effector function acquisition is contingent on the contact of additional surface receptor-ligand pairs and on the actions of cytokines in the milieu. While some of those interactions are inhibitory, others are activating and are collectively termed co-stimulatory receptors. The best studied belong to either the immunoglobulin superfamily or the tumor necrosis factor-receptor (TNFR) family. Co-stimulatory receptors include surface moieties that are constitutively expressed on resting lymphocytes such as CD28 or CD27 and others whose expression is induced upon recent previous antigen priming, ie, CD137, GITR, OX40, and ICOS. Ligation of these glycoproteins with agonist antibodies actively conveys activating signals to the lymphocyte. Those signals, acting through a potentiation of the cellular immune response, give rise to anti-tumor effects in mouse models. Anti-CD137 antibodies are undergoing clinical trials with evidence of clinical activity and anti-OX40 monoclonal antibodies (mAbs) induce interesting immunomodulation effects in humans. Antibodies anti-CD27 and GITR have recently entered clinical trials. The inherent dangers of these immunomodulation strategies are the precipitation of excessive systemic inflammation or/and invigorating silent autoimmunity. Agonist antibodies, recombinant forms of the natural ligands, and polynucleotide-based aptamers constitute the pharmacologic tools to manipulate such receptors. Preclinical data suggest that the greatest potential of these agents is achieved in combined treatment strategies.


Current Opinion in Immunology | 2014

Orchestrating immune check-point blockade for cancer immunotherapy in combinations.

Jose Luis Perez-Gracia; Sara Labiano; Maria E. Rodriguez-Ruiz; Miguel F. Sanmamed; Ignacio Melero

Inhibitory receptors on immune system cells respond to membrane-bound and soluble ligands to abort or mitigate the intensity of immune responses by raising thresholds of activation, halting proliferation, favoring apoptosis or inhibiting/deviating effector function differentiation. Such evolutionarily selected inhibitory mechanisms are termed check-points and therefore check-point inhibitors empower any ongoing anti-cancer immune response that might have been too weak or exhausted. Monoclonal antibodies (mAb) interfering with CTLA-4-CD80/86, PD-1 - PD-L1, TIM-3-GAL9 and LAG3-MHC-II belong to this category of check-point inhibitors. The anti-CTLA-4 mAb ipilimumab has been approved for metastatic melanoma. Anti-PD-1 and anti-PD-L1 mAbs have shown extremely encouraging clinical activity. The potential of combination strategies with these agents has recently been highlighted by clinical observations on CTLA-4+PD-1 combined blockade in melanoma patients.


Clinical Cancer Research | 2016

Emerging Opportunities and Challenges in Cancer Immunotherapy

Theresa L. Whiteside; Sandra Demaria; Maria E. Rodriguez-Ruiz; Hassane M. Zarour; Ignacio Melero

Immunotherapy strategies against cancer are emerging as powerful weapons for treatment of this disease. The success of checkpoint inhibitors against metastatic melanoma and adoptive T-cell therapy with chimeric antigen receptor T cells against B-cell–derived leukemias and lymphomas are only two examples of developments that are changing the paradigms of clinical cancer management. These changes are a result of many years of intense research into complex and interrelated cellular and molecular mechanisms controling immune responses. Promising advances come from the discovery of cancer mutation-encoded neoantigens, improvements in vaccine development, progress in delivery of cellular therapies, and impressive achievements in biotechnology. As a result, radical transformation of cancer treatment is taking place in which conventional cancer treatments are being integrated with immunotherapeutic agents. Many clinical trials are in progress testing potential synergistic effects of treatments combining immunotherapy with other therapies. Much remains to be learned about the selection, delivery, and off-target effects of immunotherapy used alone or in combination. The existence of numerous escape mechanisms from the host immune system that human tumors have evolved still is a barrier to success. Efforts to understand the rules of immune cell dysfunction and of cancer-associated local and systemic immune suppression are providing new insights and fuel the enthusiasm for new therapeutic strategies. In the future, it might be possible to tailor immune therapy for each cancer patient. The use of new immune biomarkers and the ability to assess responses to therapy by noninvasive monitoring promise to improve early cancer diagnosis and prognosis. Personalized immunotherapy based on individual genetic, molecular, and immune profiling is a potentially achievable future goal. The current excitement for immunotherapy is justified in view of many existing opportunities for harnessing the immune system to treat cancer. Clin Cancer Res; 22(8); 1845–55. ©2016 AACR. See all articles in this CCR Focus section, “Opportunities and Challenges in Cancer Immunotherapy.”


Clinical Cancer Research | 2014

Serum Interleukin-8 Reflects Tumor Burden and Treatment Response across Malignancies of Multiple Tissue Origins

Miguel F. Sanmamed; Omar Carranza-Rua; Carlos Alfaro; Carmen Oñate; Salvador Martín-Algarra; Guiomar Perez; Sara F. Landazuri; Alvaro Gonzalez; Stefanie Gross; Inmaculada Rodriguez; Cecilia Muñoz-Calleja; Maria E. Rodriguez-Ruiz; Bruno Sangro; José María López-Picazo; Manglio Rizzo; Guillermo Mazzolini; J.I. Pascual; Maria Pilar Andueza; Jose Luis Perez-Gracia; Ignacio Melero

Purpose: Interleukin-8 (IL8) is a chemokine produced by malignant cells of multiple cancer types. It exerts various functions in shaping protumoral vascularization and inflammation/immunity. We evaluated sequential levels of serum IL8 in preclinical tumor models and in patients to assess its ability to estimate tumor burden. Experimental Design: IL8 levels were monitored by sandwich ELISAs in cultured tumor cells supernatants, tumor-xenografted mice serum, and in samples from 126 patients with cancer. We correlated IL8 serum levels with baseline tumor burden and with treatment-induced changes in tumor burden, as well as with prognosis. Results: IL8 concentrations correlated with the number of IL8-producing tumor cells in culture. In xenografted neoplasms, IL8 serum levels rapidly dropped after surgical excision, indicating an accurate correlation with tumor burden. In patients with melanoma (n = 16), renal cell carcinoma (RCC; n = 23), non–small cell lung cancer (NSCLC; n = 21), or hepatocellular carcinoma (HCC; n = 30), serum IL8 concentrations correlated with tumor burden and stage, survival (melanoma, n = 16; RCC, n = 23; HCC, n = 33), and objective responses to therapy, including those to BRAF inhibitors (melanoma, n = 16) and immunomodulatory monoclonal antibodies (melanoma, n = 8). IL8 concentrations in urine (n = 18) were mainly elevated in tumors with direct contact with the urinary tract. Conclusions: IL8 levels correlate with tumor burden in preclinical models and in patients with cancer. IL8 is a potentially useful biomarker to monitor changes in tumor burden following anticancer therapy, and has prognostic significance. Clin Cancer Res; 20(22); 5697–707. ©2014 AACR.


Cancer Research | 2015

Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice

Miguel F. Sanmamed; Inmaculada Rodriguez; Kurt A. Schalper; Carmen Oñate; Arantza Azpilikueta; Maria E. Rodriguez-Ruiz; Aizea Morales-Kastresana; Sara Labiano; Jose Luis Perez-Gracia; Salvador Martín-Algarra; Carlos Alfaro; Guillermo Mazzolini; Francesca Sarno; Manuel Hidalgo; Alan J. Korman; Maria Jure-Kunkel; Ignacio Melero

A current pressing need in cancer immunology is the development of preclinical model systems that are immunocompetent for the study of human tumors. Here, we report the development of a humanized murine model that can be used to analyze the pharmacodynamics and antitumor properties of immunostimulatory monoclonal antibodies (mAb) in settings where the receptors targeted by the mAbs are expressed. Human lymphocytes transferred into immunodeficient mice underwent activation and redistribution to murine organs, where they exhibited cell-surface expression of hCD137 and hPD-1. Systemic lymphocyte infiltrations resulted in a lethal CD4(+) T cell-mediated disease (xenograft-versus-host disease), which was aggravated when murine subjects were administered clinical-grade anti-hCD137 (urelumab) and anti-hPD-1 (nivolumab). In mice engrafted with human colorectal HT-29 carcinoma cells and allogeneic human peripheral blood mononuclear cells (PBMC), or with a patient-derived gastric carcinoma and PBMCs from the same patient, we found that coadministration of urelumab and nivolumab was sufficient to significantly slow tumor growth. Correlated with this result were increased numbers of activated human T lymphocytes producing IFNγ and decreased numbers of human regulatory T lymphocytes in the tumor xenografts, possibly explaining the efficacy of the therapeutic regimen. Our results offer a proof of concept for the use of humanized mouse models for surrogate efficacy and histology investigations of immune checkpoint drugs and their combinations.


Cancer Research | 2016

Abscopal Effects of Radiotherapy Are Enhanced by Combined Immunostimulatory mAbs and Are Dependent on CD8 T Cells and Crosspriming

Maria E. Rodriguez-Ruiz; Inmaculada Rodriguez; Saray Garasa; Benigno Barbés; Jose Luis Solorzano; Jose Luis Perez-Gracia; Sara Labiano; Miguel F. Sanmamed; Arantza Azpilikueta; Elixabet Bolaños; Alfonso R. Sánchez-Paulete; M. Angela Aznar; Ana Rouzaut; Kurt A. Schalper; Maria Jure-Kunkel; Ignacio Melero

Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory mAbs to act both on irradiated tumor lesions and on distant, nonirradiated tumor sites. The combination of radiotherapy with immunostimulatory anti-PD1 and anti-CD137 mAbs was conducive to favorable effects on distant nonirradiated tumor lesions as observed in transplanted MC38 (colorectal cancer), B16OVA (melanoma), and 4T1 (breast cancer) models. The therapeutic activity was crucially performed by CD8 T cells, as found in selective depletion experiments. Moreover, the integrities of BATF-3-dependent dendritic cells specialized in crosspresentation/crosspriming of antigens to CD8+ T cells and of the type I IFN system were absolute requirements for the antitumor effects to occur. The irradiation regimen induced immune infiltrate changes in the irradiated and nonirradiated lesions featured by reductions in the total content of effector T cells, Tregs, and myeloid-derived suppressor cells, while effector T cells expressed more intracellular IFNγ in both the irradiated and contralateral tumors. Importantly, 48 hours after irradiation, CD8+ TILs showed brighter expression of CD137 and PD1, thereby displaying more target molecules for the corresponding mAbs. Likewise, PD1 and CD137 were induced on tumor-infiltrating lymphocytes from surgically excised human carcinomas that were irradiated ex vivo These mechanisms involving crosspriming and CD8 T cells advocate clinical development of immunotherapy combinations with anti-PD1 plus anti-CD137 mAbs that can be synergistically accompanied by radiotherapy strategies, even if the disease is left outside the field of irradiation. Cancer Res; 76(20); 5994-6005. ©2016 AACR.


European Journal of Immunology | 2016

Deciphering CD137 (4‐1BB) signaling in T‐cell costimulation for translation into successful cancer immunotherapy

Alfonso R. Sánchez-Paulete; Sara Labiano; Maria E. Rodriguez-Ruiz; Arantza Azpilikueta; Iñaki Etxeberria; Elixabet Bolaños; Valérie Lang; Manuel Rodríguez; M. Angela Aznar; Maria Jure-Kunkel; Ignacio Melero

CD137 (4‐1BB, TNF‐receptor superfamily 9) is a surface glycoprotein of the TNFR family which can be induced on a variety of leukocyte subsets. On T and NK cells, CD137 is expressed following activation and, if ligated by its natural ligand (CD137L), conveys polyubiquitination‐mediated signals via TNF receptor associated factor 2 that inhibit apoptosis, while enhancing proliferation and effector functions. CD137 thus behaves as a bona fide inducible costimulatory molecule. These functional properties of CD137 can be exploited in cancer immunotherapy by systemic administration of agonist monoclonal antibodies, which increase anticancer CTLs and enhance NK‐cell‐mediated antibody‐dependent cell‐mediated cytotoxicity. Reportedly, anti‐CD137 mAb and adoptive T‐cell therapy strongly synergize, since (i) CD137 expression can be used to select the T cells endowed with the best activities against the tumor, (ii) costimulation of the lymphocyte cultures to be used in adoptive T‐cell therapy can be done with CD137 agonist antibodies or CD137L, and (iii) synergistic effects upon coadministration of T cells and antibodies are readily observed in mouse models. Furthermore, the signaling cytoplasmic tail of CD137 is a key component of anti‐CD19 chimeric antigen receptors that are used to redirect T cells against leukemia and lymphoma in the clinic. Ongoing phase II clinical trials with agonist antibodies and the presence of CD137 sequence in these successful chimeric antigen receptors highlight the importance of CD137 in oncoimmunology.


Radiation Oncology | 2012

Pathological vertebral fracture after stereotactic body radiation therapy for lung metastases. Case report and literature review.

Maria E. Rodriguez-Ruiz; Iñigo San Miguel; Ignacio Gil-Bazo; Jose Luis Perez-Gracia; Leire Arbea; Marta Moreno-Jiménez; Javier Aristu

BackgroundStereotactic body radiation therapy (SBRT) is a radiation technique used in patients with oligometastatic lung disease. Lung and chest wall toxicities have been described in the patients but pathological vertebral fracture is an adverse effect no reported in patients treated with SBRT for lung metastases.Case presentationA 68-year-old woman with the diagnosis of a recurrence of a single lung metastatic nodule of urothelial carcinoma after third line of chemotherapy. The patient received a hypo-fractionated course of SBRT.A 3D-conformal multifield technique was used with six coplanar and one non-coplanar statics beams. A total dose of 48 Gy in three fractions over six days was prescribed to the 95% of the CTV. Ten months after the SBRT procedure, a CT scan showed complete response of the metastatic disease without signs of radiation pneumonitis. However, rib and vertebral bone toxicities were observed with the fracture-collapse of the 7th and 8th vertebral bodies and a fracture of the 7th and 8th left ribs. We report a unique case of pathological vertebral fracture appearing ten months after SBRT for an asymptomatic growing lung metastases of urothelial carcinoma.ConclusionThough SBRT allows for minimization of normal tissue exposure to high radiation doses SBRT tolerance for vertebral bone tissue has been poorly evaluated in patients with lung tumors. Oncologists should be alert to the potential risk of fatal bone toxicity caused by this novel treatment. We recommend BMD testing in all woman over 65 years old with clinical risk factors that could contribute to low BMD. If low BMD is demonstrated, we should carefully restrict the maximum radiation dose in the vertebral body in order to avoid intermediate or low radiation dose to the whole vertebral body.


Journal of Immunology | 2017

Intratumoral Delivery of Immunotherapy—Act Locally, Think Globally

M. Angela Aznar; Nicola Tinari; Antonio J. Rullán; Alfonso R. Sánchez-Paulete; Maria E. Rodriguez-Ruiz; Ignacio Melero

Immune mechanisms have evolved to cope with local entry of microbes acting in a confined fashion but eventually inducing systemic immune memory. Indeed, in situ delivery of a number of agents into tumors can mimic in the malignant tissue the phenomena that control intracellular infection leading to the killing of infected cells. Vascular endothelium activation and lymphocyte attraction, together with dendritic cell–mediated cross-priming, are the key elements. Intratumoral therapy with pathogen-associated molecular patterns or recombinant viruses is being tested in the clinic. Cell therapies can be also delivered intratumorally, including infusion of autologous dendritic cells and even tumor-reactive T lymphocytes. Intralesional virotherapy with an HSV vector expressing GM-CSF has been recently approved by the Food and Drug Administration for the treatment of unresectable melanoma. Immunomodulatory monoclonal Abs have also been successfully applied intratumorally in animal models. Local delivery means less systemic toxicity while focusing the immune response on the malignancy and the affected draining lymph nodes.

Collaboration


Dive into the Maria E. Rodriguez-Ruiz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Aristu

University of Navarra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge