Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Egle De Stefano is active.

Publication


Featured researches published by Maria Egle De Stefano.


Biochimica et Biophysica Acta | 2001

Expression of cGMP-binding cGMP-specific phosphodiesterase (PDE5) in mouse tissues and cell lines using an antibody against the enzyme amino-terminal domain

Daniela Giordano; Maria Egle De Stefano; Gennaro Citro; Anna Modica; Mauro Giorgi

We have produced a polyclonal antibody that specifically recognizes cGMP-binding cGMP-specific phosphodiesterase (PDE5). The antibody was raised in rabbit using as immunogen a fusion protein, in which glutathione S-transferase was coupled to a 171 amino acid polypeptide of the N-terminal region of bovine PDE5. The antibody is able to immunoprecipitate PDE5 activity from mouse tissues and neuroblastoma extracts while it has no effect on all other PDE isoforms present in the extracts. PDE5 activity recovered in the immunoprecipitates retains its sensitivity to specific inhibitors such as zaprinast (IC(50)=0.6 microM) and sildenafil (IC(50)=3.5 nM). Bands of the expected molecular mass were revealed when solubilized immunoprecipitates were analysed in Western blots. The antibody selectively stained cerebellar Purkinje neurones, which are known to express high levels of PDE5 mRNA. Western blot analysis of mouse tissues revealed the highest expression signal in mouse lung, followed by heart and cerebellum, while a lower signal was evident in brain, kidney and a very low signal was present in the liver. In the hybrid neuroblastoma-glioma NG108-15 cells the antibody revealed a high PDE5 induction after dibutyryl-cAMP treatment.


PLOS ONE | 2013

Acute Stress Alters Amygdala microRNA miR-135a and miR-124 Expression: Inferences for Corticosteroid Dependent Stress Response

Cecilia Mannironi; Jeremy Camon; Francesca De Vito; Antonio Biundo; Maria Egle De Stefano; Irene Persiconi; Irene Bozzoni; Paola Fragapane; Andrea Mele; Carlo Presutti

The amygdala is a brain structure considered a key node for the regulation of neuroendocrine stress response. Stress-induced response in amygdala is accomplished through neurotransmitter activation and an alteration of gene expression. MicroRNAs (miRNAs) are important regulators of gene expression in the nervous system and are very well suited effectors of stress response for their ability to reversibly silence specific mRNAs. In order to study how acute stress affects miRNAs expression in amygdala we analyzed the miRNA profile after two hours of mouse restraint, by microarray analysis and reverse transcription real time PCR. We found that miR-135a and miR-124 were negatively regulated. Among in silico predicted targets we identified the mineralocorticoid receptor (MR) as a target of both miR-135a and miR-124. Luciferase experiments and endogenous protein expression analysis upon miRNA upregulation and inhibition allowed us to demonstrate that mir-135a and mir-124 are able to negatively affect the expression of the MR. The increased levels of the amygdala MR protein after two hours of restraint, that we analyzed by western blot, negatively correlate with miR-135a and miR-124 expression. These findings point to a role of miR-135a and miR-124 in acute stress as regulators of the MR, an important effector of early stress response.


PLOS ONE | 2013

Gating of Long-Term Potentiation by Nicotinic Acetylcholine Receptors at the Cerebellum Input Stage

Francesca Prestori; Claudia Bonardi; Lisa Mapelli; Paola Lombardo; Rianne Goselink; Maria Egle De Stefano; Daniela Gandolfi; Jonathan Mapelli; Daniel Bertrand; Martijn Schonewille; Chris I. De Zeeuw; Egidio D’Angelo

The brain needs mechanisms able to correlate plastic changes with local circuit activity and internal functional states. At the cerebellum input stage, uncontrolled induction of long-term potentiation or depression (LTP or LTD) between mossy fibres and granule cells can saturate synaptic capacity and impair cerebellar functioning, which suggests that neuromodulators are required to gate plasticity processes. Cholinergic systems innervating the cerebellum are thought to enhance procedural learning and memory. Here we show that a specific subtype of acetylcholine receptors, the α7-nAChRs, are distributed both in cerebellar mossy fibre terminals and granule cell dendrites and contribute substantially to synaptic regulation. Selective α7-nAChR activation enhances the postsynaptic calcium increase, allowing weak mossy fibre bursts, which would otherwise cause LTD, to generate robust LTP. The local microperfusion of α7-nAChR agonists could also lead to in vivo switching of LTD to LTP following sensory stimulation of the whisker pad. In the cerebellar flocculus, α7-nAChR pharmacological activation impaired vestibulo-ocular-reflex adaptation, probably because LTP was saturated, preventing the fine adjustment of synaptic weights. These results show that gating mechanisms mediated by specific subtypes of nicotinic receptors are required to control the LTD/LTP balance at the mossy fibre-granule cell relay in order to regulate cerebellar plasticity and behavioural adaptation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Ventral striatal plasticity and spatial memory

Valentina Ferretti; Pascal Roullet; Francesca Sargolini; Valentina Perri; Martina Del Fabbro; Vivian J. A. Costantini; Valentina Annese; Gianluigi Scesa; Maria Egle De Stefano; Alberto Oliverio; Andrea Mele

Spatial memory formation is a dynamic process requiring a series of cellular and molecular steps, such as gene expression and protein translation, leading to morphological changes that have been envisaged as the structural bases for the engram. Despite the role suggested for medial temporal lobe plasticity in spatial memory, recent behavioral observations implicate specific components of the striatal complex in spatial information processing. However, the potential occurrence of neural plasticity within this structure after spatial learning has never been investigated. In this study we demonstrate that blockade of cAMP response element binding protein–induced transcription or inhibition of protein synthesis or extracellular proteolytic activity in the ventral striatum impairs long-term spatial memory. These findings demonstrate that, in the ventral striatum, similarly to what happens in the hippocampus, several key molecular events crucial for the expression of neural plasticity are required in the early stages of spatial memory formation.


Journal of Physiology-paris | 2006

Synaptic remodeling induced by axotomy of superior cervical ganglion neurons : Involvement of metalloproteinase-2

Paola Paggi; Maria Egle De Stefano; Tamara C. Petrucci

We previously demonstrated the involvement of the dystrophin-dystroglycan (Dys-DG) complex in the stabilization of intraganglionic synapses in rodent superior cervical ganglion (SCG) by investigating changes in the organization of their post-synaptic apparatus induced either by ganglionic neuron axotomy or by the lack of Dys in genetically dystrophic mdx mice, or by the combination of the two. A role of the matrix metalloproteinases (MMPs) MMP-2 and MMP-9 in the degradation of DG and, hence, in disrupting the connection between the extracellular matrix (ECM) and the cortical cytoskeleton, has recently been proposed. We hypothesized that the degradation by MMPs of ECM proteins and DG in ganglionic neurons may be involved in injury-induced synaptic detachment observed in rodent SCG. In this review, we report changes in MMP-2 and in the proteins involved in one of the enzymatic cascades of activation induced by axotomy of rat SCG neurons. This will be preceded by a description of our previous observations that led to investigate the role of MMP-2 in this experimental model.


Human Molecular Genetics | 2017

Shortened primary cilium length and dysregulated Sonic hedgehog signaling in Niemann-Pick C1 disease

Sonia Canterini; Jessica Dragotto; Andrea Dardis; Stefania Zampieri; Maria Egle De Stefano; Franco Mangia; Robert P. Erickson; Maria Teresa Fiorenza

The Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder due to mutations in the NPC1 gene, encoding a transmembrane protein related to the Sonic hedgehog (Shh) receptor, Patched, and involved in intracellular trafficking of cholesterol. We have recently found that the proliferation of cerebellar granule neuron precursors is significantly reduced in Npc1-/- mice due to the downregulation of Shh expression. This finding prompted us to analyze the formation of the primary cilium, a non-motile organelle that is specialized for Shh signal transduction and responsible, when defective, for several human genetic disorders. In this study, we show that the expression and subcellular localization of Shh effectors and ciliary proteins are severely disturbed in Npc1-deficient mice. The dysregulation of Shh signaling is associated with a shortening of the primary cilium length and with a reduction of the fraction of ciliated cells in Npc1-deficient mouse brains and the human fibroblasts of NPC1 patients. These defects are prevented by treatment with 2-hydroxypropyl-β-cyclodextrin, a promising therapy currently under clinical investigation. Our findings indicate that defective Shh signaling is responsible for abnormal morphogenesis of the cerebellum of Npc1-deficient mice and show, for the first time, that the formation of the primary cilium is altered in NPC1 disease.


Investigative Ophthalmology & Visual Science | 2015

Sufficient Evidence for Lymphatics in the Developing and Adult Human Choroid

Ludwig M. Heindl; Alexandra Kaser-Eichberger; Simona L. Schlereth; Felix Bock; Birgit Regenfuss; Herbert A. Reitsamer; Paul G. McMenamin; Gerard A. Lutty; Kazuichi Maruyama; Lu Chen; Reza Dana; Dontscho Kerjaschki; Kari Alitalo; Maria Egle De Stefano; Barbara M Junghans; Falk Schroedl; Claus Cursiefen

We read with interest the recent article by Koina et al.1 suggesting evidence for the presence of lymphatic vessels in the developing and adult human choroid. However, this study does not meet the recently published consensus criteria on the immunohistochemical detection of ocular lymphatic vessels,2 and therefore, in our opinion, requires critical revision. First, appropriate positive and unequivocal negative controls are not presented in the study of Koina et al. In particular, when describing novel anatomical structures for the first time, and in order to change an existing dogma, a detailed documentation of blood and lymphatic vessel detection in the control tissue is mandatory. The provided supplementary data do not fulfill these criteria. Second, the immunohistochemical marker panel used is critical. Endomucin does not represent an established lymphatic marker,3,4 but is rather expressed by “endothelial cells along the whole vascular tree including lymphatic vessels.”5 Thus, an unequivocal discrimination between blood and lymphatic vessels is impossible with this marker. A further discrepancy is the use of the transcription factor prospero-related homebox gene-1 (Prox-1) as an extranuclear lymphatic endothelial precursor marker. Although reports of the extranuclear presence of PROX-1 in cell types other than lymphatic endothelium exist,6–8 PROX-1 clearly shows a nuclear expression in lymphatic endothelia in human,9 as well as mouse10 and avian,11 embryos, retaining its nuclear localization into adulthood.12–14 On the other hand, it is not clear why lymphatic endothelial surface markers, such as podoplanin, lymphatic vascular endothelial-specific hyaluronic acid receptor-1 (LYVE-1), and the vascular endothelial marker CD34 display nuclear expression in this study. Additionally, the only lymphatic endothelial cell marker used in whole mounts is VEGFR-3, which is also expressed in fenestrated blood vessels, and, as such, also in the choriocapillaris.15,16 Morphologically, the supposed lymphatic VEGFR-3–positive vessels are indistinguishable from the honeycomb-like lobular pattern of the choriocapillaris.17 Furthermore, the study of Koina et al. includes a blatant inconsistency in the use and documentation of immunohistochemical markers between fetal and adult eyes. Although one has to acknowledge that certain lymphatic markers might be expressed during embryogenesis, this pattern easily changes during maturation.18 Therefore, such an approach would require extensive comparison of the same markers in different ages, thus representing an extensive survey in its own right. However, this is not the case in the study of Koina et al. Third, the ultrastructural study would be greatly strengthened by immunoelectron microscopy. Indeed, anchoring filaments with a diameter of 40 to 100 A—becoming readily identifiable only at magnifications of 40,000× to 50,000×—are present in lymphatics,19 but could be easily present in the choroid as well without any association to lymphatic vessels,20–22 particularly in aged eyes with typical alterations of the extracellular matrix. For this purpose, as well as for ruling out Weibel-Palade bodies, serial ultrathin sectioning with appropriate labeling would be necessary. Despite possible postmortem tissue alterations, numerous previous studies successfully applied different detection systems for ultrastructural investigations using ocular human donor tissue.23–29 A limited use of immunomarkers for these investigations, as claimed, seems therefore not justified. In regard to the above-mentioned criticisms, the evidence presented in the study of Koina et al. does not justify the hypothesized paradigm shift that functional lymphatic vessels are present in the human choroid. Rather, the findings of Koina et al. confirm previous reports of net-like structures with a “pseudo-vessel” appearance in the human choroid endowed with lymphatic vascular precursor cells (represented as LYVE-1+ macrophages).25 Those “atypical” lymphatic-like cells (i.e., endothelial cells with divergent or uncommon immunohistochemical phenotypes) may also exist in other parts of the eye. For example, the endothelial cells of Schlemms canal display many, but not all, features of terminally differentiated lymphatic endothelial cells, including responsiveness to VEGF-C–induced lymphangiogenesis.30 In closing, we acknowledge that the work of Koina et al. is a further contribution to our understanding of the choroid, but although the existence of lymphatics in the human choroid cannot be ruled out per se, because of the aforementioned points and the sheer volume of evidence to date, we maintain that the inner human eye and in particular the choroid should still be considered an immune-privileged site devoid of lymphatic vessels. Further unequivocal evidence of “typical lymphatic vessels” in the human choroid is still missing.


Neurobiology of Disease | 2011

Lack of dystrophin functionally affects α3β2/β4-nicotinic acethylcholine receptors in sympathetic neurons of dystrophic mdx mice

Silvia Di Angelantonio; Maria Egle De Stefano; Alessio Piccioni; Loredana Lombardi; Cecilia Gotti; Paola Paggi

In the sympathetic superior cervical ganglion (SCG), nicotinic acetylcholine receptors (nAChRs) mediate fast synaptic transmission. We previously demonstrated that in SCG neurons of mdx mice, an animal model for Duchenne muscular dystrophy, lack of dystrophin causes a decrease, compared to the wild-type, in post-synaptic nAChRs containing the α3 subunit associated with β2 and/or β4 (α3β2/β4-nAChRs), but not in those containing the α7 subunit. Here we show, by whole cell patch-clamp recordings from cultured SCG neurons, that both nicotine and acetylcholine-evoked currents through α3β2/β4-nAChRs are significantly reduced in mdx mice compared to the wild-type, while those through α7-nAChR are unaffected. This reduction associates with that of protein levels of α3, β2 and β4 subunits. Therefore, we suggest that, in mdx mouse SCG neurons, lack of dystrophin, by specifically affecting membrane stabilization of α3β2/β4-nAChRs, could determine an increase in receptor internalization and degradation, with consequent reduction in the fast intraganglionic cholinergic transmission.


European Journal of Neuroscience | 2012

Lack of dystrophin in mdx mice modulates the expression of genes involved in neuron survival and differentiation

Valerio Licursi; Ivan Caiello; Loredana Lombardi; Maria Egle De Stefano; Rodolfo Negri; Paola Paggi

Duchenne muscular dystrophy is an X‐linked disease characterized by progressive and lethal muscular wasting. Dystrophic patients, however, are also afflicted by several neurological disorders, the importance of which is generally underestimated. As promising therapies for muscles are currently in clinical trial stages, with the potential to provide an increase in the lifespan of young patients, determination of the genetic and molecular aspects characterizing this complex disease is crucial in order to allow the development of therapeutic approaches specifically designed for the nervous system. In this study, differences in gene expression in the superior cervical ganglion of postnatal day (P)5, P10 and 6–7‐week‐old wild‐type and genetically dystrophic mdx mice were evaluated by DNA microarray analysis. The main aim was to verify whether the lack of dystrophin affected the transcript levels of genes related to different aspects of neuron development and differentiation. Ontological analysis of more than 500 modulated genes showed significant differences in genetic class enrichment at each postnatal date. Upregulated genes mainly fell in the categories of vesicular trafficking, and cytoskeletal and synaptic organization, whereas downregulated genes were associated with axon development, growth factors, intracellular signal transduction, metabolic processes, gene expression regulation, synapse morphogenesis, and nicotinic receptor clustering. These data strongly suggest that the structural and functional alterations previously described in both the autonomic and central nervous systems of mdx mice with respect to wild‐type mice and related to crucial aspects of neuron life (i.e. postnatal development, differentiation, and plasticity) result not only from protein post‐translational modifications, but also from direct and/or indirect modulation of gene expression.


Molecular and Cellular Neuroscience | 2017

NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice

Loredana Lombardi; Irene Persiconi; Alessandra Gallo; Casper C. Hoogenraad; Maria Egle De Stefano

Abstract Duchenne muscular dystrophy (DMD) is a lethal disease, determined by lack of dystrophin (Dp427), a muscular cytoskeletal protein also expressed by selected neuronal populations. Consequently, besides muscular wasting, both human patients and DMD animal models suffer several neural disorders. In previous studies on the superior cervical ganglion (SCG) of wild type and dystrophic mdx mice (Lombardi et al. 2008), we hypothesized that Dp427 could play some role in NGF‐dependent axonal growth, both during development and adulthood. To address this issue, we first analyzed axon regeneration potentials of SCG neurons of both genotypes after axotomy in vivo. While noradrenergic innervation of mdx mouse submandibular gland, main source of nerve growth factor (NGF), recovered similarly to wild type, iris innervation (muscular target) never did. We, therefore, evaluated whether dystrophic SCG neurons were poorly responsive to NGF, especially at low concentration. Following in vitro axotomy in the presence of either 10 or 50 ng/ml NGF, the number of regenerated axons in mdx mouse neuron cultures was indeed reduced, compared to wild type, at the lower concentration. Neurite growth parameters (i.e. number, length), growth cone dynamics and NGF/TrkA receptor signaling in differentiating neurons (not injured) were also significantly reduced when cultured with 10 ng/ml NGF, but also with higher NGF concentrations. In conclusion, we propose a role for Dp427 in NGF‐dependent cytoskeletal dynamics associated to growth cone advancement, possibly through indirect stabilization of TrkA receptors. Considering NGF activity in nervous system development/remodeling, this aspect could concur in some of the described DMD‐associated neural dysfunctions. HighlightsSympathetic neurons of mdx mice are less responsive to NGF compared to wild type.Dystrophin (Dp427) is important for NGF‐dependent axonal growth and regeneration.Lack of Dp427 alters growth cone dynamics of mdx mouse sympathetic neurons in vitro.Axon growth and regeneration of NGF‐dependent autonomic neurons are processes needing accurate evaluation in DMD patients.

Collaboration


Dive into the Maria Egle De Stefano's collaboration.

Top Co-Authors

Avatar

Paola Paggi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Loredana Lombardi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Andrea Mele

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandra Kaser-Eichberger

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Herbert A. Reitsamer

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar

Lu Chen

University of California

View shared research outputs
Top Co-Authors

Avatar

Reza Dana

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Irene Persiconi

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge