Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Eldh is active.

Publication


Featured researches published by Maria Eldh.


Journal of Translational Medicine | 2011

Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages

Cecilia Lässer; Vesta Seyed Alikhani; Karin M. Ekström; Maria Eldh; Patricia Torregrosa Paredes; Apostolos Bossios; Margareta Sjöstrand; Susanne Gabrielsson; Jan Lötvall; Hadi Valadi

BackgroundExosomes are 30-100 nm membrane vesicles of endocytic origin produced by numerous cells. They can mediate diverse biological functions, including antigen presentation. Exosomes have recently been shown to contain functional RNA, which can be delivered to other cells. Exosomes may thus mediate biological functions either by surface-to-surface interactions with cells, or by the delivery of functional RNA to cells. Our aim was therefore to determine the presence of RNA in exosomes from human saliva, plasma and breast milk and whether these exosomes can be taken up by macrophages.MethodExosomes were purified from human saliva, plasma and breast milk using ultracentrifugation and filtration steps. Exosomes were detected by electron microscopy and examined by flow cytometry. Flow cytometry was performed by capturing the exosomes on anti-MHC class II coated beads, and further stain with anti-CD9, anti-CD63 or anti-CD81. Breast milk exosomes were further analysed for the presence of Hsc70, CD81 and calnexin by Western blot. Total RNA was detected with a Bioanalyzer and mRNA was identified by the synthesis of cDNA using an oligo (dT) primer and analysed with a Bioanalyzer. The uptake of PKH67-labelled saliva and breast milk exosomes by macrophages was examined by measuring fluorescence using flow cytometry and fluorescence microscopy.ResultsRNA was detected in exosomes from all three body fluids. A portion of the detected RNA in plasma exosomes was characterised as mRNA. Our result extends the characterisation of exosomes in healthy humans and confirms the presence of RNA in human saliva and plasma exosomes and reports for the first time the presence of RNA in breast milk exosomes. Our results also show that the saliva and breast milk exosomes can be taken up by human macrophages.ConclusionsExosomes in saliva, plasma and breast milk all contain RNA, confirming previous findings that exosomes from several sources contain RNA. Furthermore, exosomes are readily taken up by macrophages, supporting the notion that exosomal RNA can be shuttled between cells.


Journal of extracellular vesicles | 2013

Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes

Rossella Crescitelli; Cecilia Lässer; Tamás Szabó; Ágnes Kittel; Maria Eldh; Irma Dianzani; Edit I. Buzás; Jan Lötvall

Introduction In recent years, there has been an exponential increase in the number of studies aiming to understand the biology of exosomes, as well as other extracellular vesicles. However, classification of membrane vesicles and the appropriate protocols for their isolation are still under intense discussion and investigation. When isolating vesicles, it is crucial to use systems that are able to separate them, to avoid cross-contamination. Method EVs released from three different kinds of cell lines: HMC-1, TF-1 and BV-2 were isolated using two centrifugation-based protocols. In protocol 1, apoptotic bodies were collected at 2,000×g, followed by filtering the supernatant through 0.8 µm pores and pelleting of microvesicles at 12,200×g. In protocol 2, apoptotic bodies and microvesicles were collected together at 16,500×g, followed by filtering of the supernatant through 0.2 µm pores and pelleting of exosomes at 120,000×g. Extracellular vesicles were analyzed by transmission electron microscopy, flow cytometry and the RNA profiles were investigated using a Bioanalyzer®. Results RNA profiles showed that ribosomal RNA was primary detectable in apoptotic bodies and smaller RNAs without prominent ribosomal RNA peaks in exosomes. In contrast, microvesicles contained little or no RNA except for microvesicles collected from TF-1 cell cultures. The different vesicle pellets showed highly different distribution of size, shape and electron density with typical apoptotic body, microvesicle and exosome characteristics when analyzed by transmission electron microscopy. Flow cytometry revealed the presence of CD63 and CD81 in all vesicles investigated, as well as CD9 except in the TF-1-derived vesicles, as these cells do not express CD9. Conclusions Our results demonstrate that centrifugation-based protocols are simple and fast systems to distinguish subpopulations of extracellular vesicles. Different vesicles show different RNA profiles and morphological characteristics, but they are indistinguishable using CD63-coated beads for flow cytometry analysis.


PLOS ONE | 2010

Exosomes Communicate Protective Messages during Oxidative Stress; Possible Role of Exosomal Shuttle RNA

Maria Eldh; Karin M. Ekström; Hadi Valadi; Margareta Sjöstrand; Bob Olsson; Margareta Jernås; Jan Lötvall

Background Exosomes are small extracellular nanovesicles of endocytic origin that mediate different signals between cells, by surface interactions and by shuttling functional RNA from one cell to another. Exosomes are released by many cells including mast cells, dendritic cells, macrophages, epithelial cells and tumour cells. Exosomes differ compared to their donor cells, not only in size, but also in their RNA, protein and lipid composition. Methodology/Principal Findings In this study, we show that exosomes, released by mouse mast cells exposed to oxidative stress, differ in their mRNA content. Also, we show that these exosomes can influence the response of other cells to oxidative stress by providing recipient cells with a resistance against oxidative stress, observed as an attenuated loss of cell viability. Furthermore, Affymetrix microarray analysis revealed that the exosomal mRNA content not only differs between exosomes and donor cells, but also between exosomes derived from cells grown under different conditions; oxidative stress and normal conditions. Finally, we also show that exposure to UV-light affects the biological functions associated with exosomes released under oxidative stress. Conclusions/Significance These results argue that the exosomal shuttle of RNA is involved in cell-to-cell communication, by influencing the response of recipient cells to an external stress stimulus.


Journal of Visualized Experiments | 2012

Isolation and Characterization of RNA-Containing Exosomes

Cecilia Lässer; Maria Eldh; Jan Lötvall

The field of exosome research is rapidly expanding, with a dramatic increase in publications in recent years. These small vesicles (30-100 nm) of endocytic origin were first proposed to function as a way for reticulocytes to eradicate the transferrin receptor while maturing into erythrocytes1, and were later named exosomes. Exosomes are formed by inward budding of late endosomes, producing multivesicular bodies (MVBs), and are released into the environment by fusion of the MVBs with the plasma membrane2. Since the first discovery of exosomes, a wide range of cells have been shown to release these vesicles. Exosomes have also been detected in several biological fluids, including plasma, nasal lavage fluid, saliva and breast milk3-6. Furthermore, it has been demonstrated that the content and function of exosomes depends on the originating cell and the conditions under which they are produced. A variety of functions have been demonstrated for exosomes, such as induction of tolerance against allergen7,8, eradication of established tumors in mice9, inhibition and activation of natural killer cells10-12, promotion of differentiation into T regulatory cells13, stimulation of T cell proliferation14 and induction of T cell apoptosis15. Year 2007 we demonstrated that exosomes released from mast cells contain messenger RNA (mRNA) and microRNA (miRNA), and that the RNA can be shuttled from one cell to another via exosomes. In the recipient cells, the mRNA shuttled by exosomes was shown to be translated into protein, suggesting a regulatory function of the transferred RNA16. Further, we have also shown that exosomes derived from cells grown under oxidative stress can induce tolerance against further stress in recipient cells and thus suggest a biological function of the exosomal shuttle RNA17. Cell culture media and biological fluids contain a mixture of vesicles and shed fragments. A high quality isolation method for exosomes, followed by characterization and identification of the exosomes and their content, is therefore crucial to distinguish exosomes from other vesicles and particles. Here, we present a method for the isolation of exosomes from both cell culture medium and body fluids. This isolation method is based on repeated centrifugation and filtration steps, followed by a final ultracentrifugation step in which the exosomes are pelleted. Important methods to identify the exosomes and characterize the exosomal morphology and protein content are highlighted, including electron microscopy, flow cytometry and Western blot. The purification of the total exosomal RNA is based on spin column chromatography and the exosomal RNA yield and size distribution is analyzed using a Bioanalyzer.


Molecular Immunology | 2012

Importance of RNA isolation methods for analysis of exosomal RNA: Evaluation of different methods

Maria Eldh; Jan Lötvall; Carina Malmhäll; Karin M. Ekström

Exosomes are small RNA containing vesicles of endocytic origin, which can take part in cell-to-cell communication partly by the transfer of exosomal RNA between cells. Exosomes are released by many cells and can also be found in several biological fluids including blood plasma and breast milk. Exosomes differ compared to their donor cells not only in size but also in RNA, protein and lipid composition. The aim of the current study was to determine the optimal RNA extraction method for analysis of exosomal RNA, to support future studies determining the biological roles of the exosomal RNA. Different methods were used to extract exosomal and cellular RNA. All methods evaluated extracted high quality and purity RNA as determined by RNA integrity number (RIN) and OD values for cellular RNA using capillary electrophoresis and spectrophotometer. Interestingly, the exosomal RNA yield differed substantially between the different RNA isolation methods. There was also a difference in the exosomal RNA patterns in the electropherograms, indicating that the tested methods extract exosomal RNA with different size distribution. A pure column based approach resulted in the highest RNA yield and the broadest RNA size distribution, whereas phenol and combined phenol and column based approaches lost primarily large RNAs. Moreover, the use of phenol and combined techniques resulted in reduced yield of exosomal RNA, with a more narrow size distribution pattern resulting in an enrichment of small RNA including microRNA. In conclusion, the current study presents a unique comparison of seven different methods for extraction of exosomal RNA. As the different isolation methods give extensive variation in exosomal RNA yield and patterns, it is crucial to select an isolation approach depending on the research question at hand.


Journal of extracellular vesicles | 2012

Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells

Karin M. Ekström; Hadi Valadi; Margareta Sjöstrand; Carina Malmhäll; Apostolos Bossios; Maria Eldh; Jan Lötvall

Background: Exosomes are nanosized vesicles of endocytic origin that are released into the extracellular environment by many different cells. It has been shown that exosomes from various cellular origins contain a substantial amount of RNA (mainly mRNA and microRNA). More importantly, exosomes are capable of delivering their RNA content to target cells, which is a novel way of cell-to-cell communication. The aim of this study was to evaluate whether exosomal shuttle RNA could play a role in the communication between human mast cells and between human mast cells and human CD34+ progenitor cells. Methods: The mRNA and microRNA content of exosomes from a human mast cell line, HMC-1, was analysed by using microarray technology. Co-culture experiments followed by flow cytometry analysis and confocal microscopy as well as radioactive labeling experiments were performed to examine the uptake of these exosomes and the shuttle of the RNA to other mast cells and CD34+ progenitor cells. Results: In this study, we show that human mast cells release RNA-containing exosomes, with the capacity to shuttle RNA between cells. Interestingly, by using microRNA microarray analysis, 116 microRNAs could be identified in the exosomes and 134 microRNAs in the donor mast cells. Furthermore, DNA microarray experiments revealed the presence of approximately 1800 mRNAs in the exosomes, which represent 15% of the donor cell mRNA content. In addition, transfer experiments revealed that exosomes can shuttle RNA between human mast cells and to CD34+ hematopoietic progenitor cells. Conclusion: These findings suggest that exosomal shuttle RNA (esRNA) can play a role in the communication between cells, including mast cells and CD34+ progenitor cells, implying a role in cells maturation process. To access the supplementary material to this article: Tables S1-S6, please see Supplementary files under Article Tools online.


The Journal of Allergy and Clinical Immunology | 2014

MicroRNA-155 is essential for TH2-mediated allergen-induced eosinophilic inflammation in the lung

Carina Malmhäll; Sahar Alawieh; You Lu; Margareta Sjöstrand; Apostolos Bossios; Maria Eldh; Madeleine Rådinger

BACKGROUND Allergic asthma is a chronic disease of the conducting airways characterized by T(H)2 inflammation and tissue remodeling after exposure to inhaled allergens. Although the T(H)2 profile is undisputed, the underlying molecular mechanisms leading to this abnormal T(H)2 profile remain largely unclear. MicroRNAs (miRNAs) are short noncoding RNAs that are important regulators of gene expression in the immune system. However, the role of miRNAs, specifically miR-155, in the regulation of allergic airway inflammation is unexplored. OBJECTIVES We sought to assess the contribution of miR-155 in a mouse model of allergic airway inflammation. METHODS To investigate a role for miR-155 in the regulation of allergic inflammation in vivo, we used miR-155 knockout (KO) and wild-type (WT) mice sensitized and exposed to ovalbumin. RESULTS miR-155 deficiency resulted in diminished eosinophilic inflammation and mucus hypersecretion in the lungs of allergen-sensitized and allergen-challenged mice compared with WT control animals. This was supported by a reduction in T(H)2 cell numbers and airway T(H)2 cytokine levels and complete abrogation of allergen-induced airway eotaxin-2/CCL24 and periostin levels in miR-155 KO mice. Intranasal instillation of eotaxin-2/CCL24 before allergen challenge partially restored airway eosinophilia in miR-155 KO mice, and adoptive transfer of CD4(+) T cells resulted in a similar degree of airway eosinophilia in miR-155 KO and WT mice. Furthermore, the transcription factor PU.1, a negative regulator of T(H)2 cytokine production, was upregulated in the airways of allergen-challenged miR-155 KO mice compared with WT mice. CONCLUSIONS Our data provides evidence that miR-155 contributes to the regulation of allergic airway inflammation by modulating T(H)2 responses through the transcription factor PU.1.


Analytical Chemistry | 2014

Determination of Exosome Concentration in Solution Using Surface Plasmon Resonance Spectroscopy

Déborah L. M. Rupert; Cecilia Lässer; Maria Eldh; Stephan Block; Vladimir P. Zhdanov; Jan Lötvall; Marta Bally; Fredrik Höök

Exosomes are cell-secreted nanometer-sized extracellular vesicles that have been reported to play an important role in intercellular communication. They are also considered potential diagnostic markers for various health disorders, and intense investigations are presently directed toward their use as carriers in drug-delivery and gene-therapy applications. This has generated a growing need for sensitive methods capable of accurately and specifically determining the concentration of exosomes in complex biological fluids. Here, we explore the use of label-free surface-based sensing with surface plasmon resonance (SPR) read-out to determine the concentration of exosomes in solution. Human mast cell secreted exosomes carrying the tetraspanin membrane protein CD63 were analyzed by measuring their diffusion-limited binding rate to an SPR sensor surface functionalized with anti-CD63 antibodies. The concentration of suspended exosomes was determined by first converting the SPR response into the surface-bound mass. The increase in mass uptake over time was then related to the exosome concentration in solution using a formalism describing diffusion-limited binding under controlled flow conditions. The proposed quantification method is based on a calibration and control measurements performed with proteins and synthetic lipid vesicles and takes into account (i) the influence of the broad size distribution of the exosomes on the surface coverage, (ii) the fact that their size is comparable to the ∼150 nm probing depth of SPR, and (iii) possible deformation of exosomes upon adsorption. Under those considerations, the accuracy of the concentration determination was estimated to be better than ±50% and significantly improve if the exosome deformation is negligible.


BMC Cancer | 2014

MicroRNA in exosomes isolated directly from the liver circulation in patients with metastatic uveal melanoma.

Maria Eldh; Roger Olofsson Bagge; Cecilia Lässer; Joar Svanvik; Margareta Sjöstrand; Jan Mattsson; Per Lindnér; Dong-Sic Choi; Yong Song Gho; Jan Lötvall

BackgroundUveal melanoma is a tumour arising from melanocytes of the eye, and 30 per cent of these patients develop liver metastases. Exosomes are small RNA containing nano-vesicles released by most cells, including malignant melanoma cells. This clinical translational study included patients undergoing isolated hepatic perfusion (IHP) for metastatic uveal melanoma, from whom exosomes were isolated directly from liver perfusates. The objective was to determine whether exosomes are present in the liver circulation, and to ascertain whether these may originate from melanoma cells.MethodsExosomes were isolated from the liver perfusate of twelve patients with liver metastases from uveal melanoma undergoing IHP. Exosomes were visualised by electron microscopy, and characterised by flow cytometry, Western blot and real-time PCR. Furthermore, the concentration of peripheral blood exosomes were measured and compared to healthy controls.ResultsThe liver perfusate contained Melan-A positive and RNA containing exosomes, with similar miRNA profiles among patients, but dissimilar miRNA compared to exosomes isolated from tumor cell cultures. Patients with metastatic uveal melanoma had a higher concentration of exosomes in their peripheral venous blood compared to healthy controls.ConclusionsMelanoma exosomes are released into the liver circulation in metastatic uveal melanoma, and is associated with higher concentrations of exosomes in the systemic circulation. The exosomes isolated directly from liver circulation contain miRNA clusters that are different from exosomes from other cellular sources.


Oncotarget | 2016

Exosomal cancer immunotherapy is independent of MHC molecules on exosomes

Stefanie Hiltbrunner; Pia Larssen; Maria Eldh; María José Martínez-Bravo; Arnika K. Wagner; Mikael Karlsson; Susanne Gabrielsson

Peptide-loaded exosomes are promising cancer treatment vehicles; however, moderate T cell responses in human clinical trials indicate a need to further understand exosome-induced immunity. We previously demonstrated that antigen-loaded exosomes carry whole protein antigens and require B cells for inducing antigen-specific T cells. Therefore, we investigated the relative importance of exosomal major histocompatibility complex (MHC) class I for the induction of antigen-specific T cell responses and tumour protection. We show that ovalbumin-loaded dendritic cell-derived exosomes from MHCI−/− mice induce antigen-specific T cells at the same magnitude as wild type exosomes. Furthermore, exosomes lacking MHC class I, as well as exosomes with both MHC class I and II mismatch, induced tumour infiltrating T cells and increased overall survival to the same extent as syngeneic exosomes in B16 melanoma. In conclusion, T cell responses are independent of exosomal MHC/peptide complexes if whole antigen is present. This establishes the prospective of using impersonalised exosomes, and will greatly increase the feasibility of designing exosome-based vaccines or therapeutic approaches in humans.

Collaboration


Dive into the Maria Eldh's collaboration.

Top Co-Authors

Avatar

Jan Lötvall

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hadi Valadi

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sahar Alawieh

University of Gothenburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge