Maria Elena Rodríguez-Cabezas
University of Granada
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Elena Rodríguez-Cabezas.
Clinical Nutrition | 2010
Maria Elena Rodríguez-Cabezas; Desirée Camuesco; Belén Arribas; Natividad Garrido-Mesa; Mònica Comalada; Elvira Bailón; Margarita Cueto-Sola; Pilar Utrilla; Eduardo Guerra-Hernández; Carlos Pérez-Roca; Julio Gálvez; Antonio Zarzuelo
Different types of dietary fiber can be distinguished considering their rate of fermentability, thus determining the location of the large intestine where they exert their beneficial effect. Their combination could be interesting to obtain health-promoting effects throughout the entire colon. The aim of the present study was to evaluate the synergistic effect of two dietary fibers with different fermentation patterns, fructooligosaccharides (FOS) (Beneo(®)-95) and resistant starch (Fibersol(®)-2), after their administration to healthy rats or in trinitrobenzenesulphonic acid-(TNBS) colitic rats, with an altered colonic immune response. In healthy rats, the administration of the combination of FOS and resistant starch induced changes in the intestinal microbiota, by increasing lactobacilli and bifidobacteria in caecum and colonic contents. Furthermore, its administration up-regulated the expression of the trefoil factor-3 and MUC-2 in comparison with untreated rats, thus improving the intestinal barrier function. The beneficial effects observed with this combination were confirmed in the TBNS model of rat colitis, since it was able to exert intestinal anti-inflammatory effect, associated with an increase of protective bacteria and up-regulation of epithelial defense mechanisms. In conclusion, the combination of two different dietary fibers may result in a synergistic prebiotic effect, and may confer greater health benefits to the host.
Clinical Nutrition | 2003
Maria Elena Rodríguez-Cabezas; Julio Gálvez; Desirée Camuesco; Maria Dolores Lorente; Ángel Concha; O Martinez-Augustin; L Redondo; Antonio Zarzuelo
BACKGROUND & AIMS Dietary fiber has been proven to be beneficial in maintaining remission in human ulcerative colitis, an effect related with an increased luminal production of short-chain fatty acids (SCFA). The aim of the present study was to further investigate the mechanisms involved in the intestinal anti-inflammatory effects of dietary fiber in an experimental model of rat colitis. METHODS HLA-B27 transgenic rats (8-10 weeks old) were fed a fiber-supplemented diet (5% Plantago ovata seeds) for 13 weeks before evaluation of the colonic inflammatory status, both histologically and biochemically. The luminal colonic production of SCFA was quantified. In vitro studies were also performed to test the interaction between two SCFA (butyrate and propionate) as inhibitors of cytokine production in THP-1 cells. RESULTS Dietary fiber supplementation ameliorated the development of colonic inflammation in transgenic rats as evidenced by an improvement of intestinal cytoarchitecture. This effect was associated with a decrease in some of the pro-inflammatory mediators involved in the inflammatory process: nitric oxide, leukotriene B(4), tumor necrosis factor alpha (TNFalpha). The intestinal contents from fiber-treated colitic rats showed a significant higher production of SCFA, butyrate and propionate, than non-treated colitic animals. In vitro studies revealed a synergistic inhibitory effect of butyrate and propionate on TNFalpha production. CONCLUSIONS Dietary fiber supplementation ameliorated colonic damage in HLA-B27 transgenic rats. This effects was associated with an increased production of SCFA, which can act synergistically in inhibiting the production of pro-inflammatory mediators.
Immunobiology | 2010
Elvira Bailón; Margarita Cueto-Sola; Pilar Utrilla; Maria Elena Rodríguez-Cabezas; Natividad Garrido-Mesa; Antonio Zarzuelo; Jordi Xaus; Julio Gálvez; Mònica Comalada
Survival and proliferation signals are two processes closely interrelated and finely controlled in most cell types, whose deregulation may lead to carcinogenesis. In the last decade, different studies have suggested that both cellular functions are also intimately associated with other cellular activities such as differentiation and cellular activation, especially in immune cells. The aim of this study was to evaluate the effects of the short-chain fatty acid (SCFA) butyrate on the proliferation and activation state of different cell types involved in inflammatory bowel disease. We focused on intestinal epithelial cells, macrophages and T-lymphocytes, using both primary non-transformed cultures and established cell lines. The results showed that low concentrations of butyrate inhibited the proliferation of all the immune cell types tested in this work, whereas it only induced apoptosis in activated T-lymphocytes, non-differentiated epithelial cells and macrophage cell lines, but not in differentiated epithelial cells or primary macrophages. Butyrate apoptosis induction was mediated by caspase-3/7 activation. This SCFA was only able to modify cell activation, measured as expression of inflammatory cytokines, in those cell types in which apoptosis was induced. In conclusion, our results suggest a cell type-specificity of the immune-modulatory effects of butyrate based on the proliferation/activation characteristic physiology of these processes in different cells types.
Nutrients | 2016
Teresa Vezza; Alba Rodriguez-Nogales; Francesca Algieri; M.P. Utrilla; Maria Elena Rodríguez-Cabezas; Julio Gálvez
Inflammatory bowel disease (IBD) is characterized by chronic inflammation of the intestine that compromises the patients’ life quality and requires sustained pharmacological and surgical treatments. Since their etiology is not completely understood, non-fully-efficient drugs have been developed and those that have shown effectiveness are not devoid of quite important adverse effects that impair their long-term use. In this regard, a growing body of evidence confirms the health benefits of flavonoids. Flavonoids are compounds with low molecular weight that are widely distributed throughout the vegetable kingdom, including in edible plants. They may be of great utility in conditions of acute or chronic intestinal inflammation through different mechanisms including protection against oxidative stress, and preservation of epithelial barrier function and immunomodulatory properties in the gut. In this review we have revised the main flavonoid classes that have been assessed in different experimental models of colitis as well as the proposed mechanisms that support their beneficial effects.
Biochemical Pharmacology | 2011
Natividad Garrido-Mesa; Pilar Utrilla; Mònica Comalada; Pedro Zorrilla; José Garrido-Mesa; Antonio Zarzuelo; Maria Elena Rodríguez-Cabezas; Julio Gálvez
Antibiotics have been empirically used for human inflammatory bowel disease, being limited to short periods. Probiotics are able to attenuate intestinal inflammation due to its immunomodulatory properties, being considered as safe when chronically administered. The aim was to test the association of minocycline, a tetracycline with immunomodulatory properties, and the probiotic Escherichia coli Nissle 1917 (EcN) in a mouse model of reactivated colitis. For this purpose, female C57BL/6J mice were assigned to different groups: non-colitic and dextran sodium sulfate (DSS)-control groups (without treatment), minocycline (50 mg/kg/day; p.o.), EcN (5×10(8) CFU/day; p.o.), and minocycline plus EcN treated groups. Colitis was induced by adding DSS in the drinking water (3%) for 5 days; 2 weeks later, colitis was reactivated by subsequent exposure to DSS. The inflammatory status was evaluated daily by a disease activity index (DAI); colonic damage was assessed histologically and biochemically by evaluating mRNA relative expression of different mediators by qPCR. Finally, a microbiological analysis of the colonic contents was performed. Minocycline and EcN exerted intestinal anti-inflammatory effect and attenuated the reactivation of the colitis, as shown by the reduced DAI values, being these effects greater when combining both treatments. This was evidenced histologically and biochemically, by reduced expression of TNFα, IL-1β, IL-2, MIP-2, MCP-1, ICAM-1, iNOS and MMP-9, together with increased MUC-3 and ZO-1 expression. Finally, the altered microbiota composition of colitic mice was partially restored after the different treatments. In conclusion, EcN supplementation to minocycline treatment improves the recovery of the intestinal damage and prevents the reactivation of experimental colitis.
British Journal of Pharmacology | 2009
Belén Arribas; Maria Elena Rodríguez-Cabezas; Desirée Camuesco; Mònica Comalada; Elvira Bailón; Pilar Utrilla; A Nieto; Ángel Concha; Antonio Zarzuelo; Julio Gálvez
Background and purpose: Escherichia coli Nissle 1917 is a probiotic strain used in the treatment of intestinal immune diseases, including ulcerative colitis. The aim of the present study was to test if this probiotic bacterium can also show systemic immunomodulatory properties after oral administration.
Clinical Science | 2014
Marta Toral; Manuel Gómez-Guzmán; Rosario Jiménez; Miguel Romero; Manuel Castro Sánchez; M.P. Utrilla; Natividad Garrido-Mesa; Maria Elena Rodríguez-Cabezas; Mónica Olivares; Julio Gálvez; Juan Duarte
Obesity is associated with intestine dysbiosis and is characterized by a low-grade inflammatory status, which affects vascular function. In the present study, we evaluated the effects of a probiotic with immunomodulatory properties, Lactobacillus coryniformis CECT5711, in obese mice fed on an HFD (high-fat diet). The probiotic treatment was given for 12 weeks, and it did not affect the weight evolution, although it reduced basal glycaemia and insulin resistance. L. coryniformis administration to HFD-induced obese mice induced marked changes in microbiota composition and reduced the metabolic endotoxaemia as it decreased the LPS (lipopolysaccharide) plasma level, which was associated with a significant improvement in gut barrier disruption. Furthermore, it lowered TNFα (tumour necrosis factor α) expression in liver, improving the inflammatory status, and thus the glucose metabolism. Additionally, the probiotic reversed the endothelial dysfunction observed in obese mice when endothelium- and NO (nitric oxide)-dependent vasodilatation induced by acetylcholine in aortic rings was studied. It also restored the increased vessel superoxide levels observed in obese mice, by reducing NADPH oxidase activity and increasing antioxidant enzymes. Moreover, chronic probiotic administration for 2 weeks also improved endothelial dysfunction and vascular oxidative stress induced by in vivo administration of LPS in control mice fed on a standard chow diet. The results of the present study demonstrate an endothelial-protective effect of L. coryniformis CECT5711 in obese mice by increasing NO bioavailability, suggesting the therapeutic potential of this gut microbiota manipulation to prevent vasculopathy in obesity.
International Journal for Vitamin and Nutrition Research | 2001
Raquel González; Fermín Sánchez de Medina; Julio Gálvez; Maria Elena Rodríguez-Cabezas; Juan Duarte; Antonio Zarzuelo
Vitamin E, the most potent antioxidant in the lipid phase, was tested for antiinflammatory activity in trinitrobenzenesulfonic acid-induced rat colitis. Rats were fed a nonpurified diet (saline and control groups) or a vitamin E supplemented diet (treated group, 300 mg/kg nonpurified diet). Vitamin E supplementation, which resulted in increased colonic vitamin E levels, reduced colonic weight and damage score, prevented lipid peroxidation and diarrhea, reduced interleukin-1 beta levels and preserved glutathione reductase activity and total glutathione levels. However, it did not modify myeloperoxidase levels, which are indicative of neutrophil infiltration in the inflamed colon. Vitamin E protects the rat colon from oxidative stress associated with inflammation.
Journal of Agricultural and Food Chemistry | 2010
Belén Arribas; Elena Suárez-Pereira; Carmen Ortiz Mellet; José M. García Fernández; Christoph Buttersack; Maria Elena Rodríguez-Cabezas; Natividad Garrido-Mesa; Elvira Bailón; Eduardo Guerra-Hernández; Antonio Zarzuelo; Julio Gálvez
In the present study we describe the preparation and chemical characterization of a caramel with a high (70%) content of difructose dianhydrides (DFAs) and glycosylated derivatives (DFAs). This product was obtained by thermal activation (90 degrees C) of highly concentrated (90% w/v) aqueous D-fructose solutions using the sulfonic acid ion-exchange resin Lewatit S2328 as caramelization catalyst. DFAs represent a unique family of cyclic fructans with prebiotic properties already present in low proportions (<15%) in commercial caramel. We report the antiinflammatory activity of the new DFA-enriched caramel in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis, an experimental model that resembles human inflammatory bowel disease (IBD), and compare its effects with those obtained with a commercial sucrose caramel and with linear fructooligosaccharides (FOS). For this purpose, the effects on colon tissue damage, gut microbiota, short-chain fatty acid (SCFAs) production, and different inflammatory markers were evaluated. The administration of DFA-enriched caramel to colitic rats showed intestinal antiinflammatory effect, as evidenced macroscopically by a significant reduction in the extent of the colonic damage induced by TNBS. This effect was similar to that obtained with FOS in the same experimental settings, whereas commercial caramel was devoid of any significant antiinflammatory effect. The beneficial effect was associated with the inhibition of the colonic levels of the proinflammatory cytokines, tumor necrosis factor alpha (TNF alpha) and interleukin 1beta (IL-1beta), and the reduction in colonic myeloperoxidase (MPO) activity and inducible nitric oxide synthase (iNOS) expression. The DFA-enriched caramel also promoted a more favorable intestinal microbiota, increasing lactobacilli and bifidobacteria counts as well as inducing higher concentrations of SCFAs in the luminal colonic contents. These results reinforce the concept of DFAs and glycosyl-DFAs as dietary beneficial compounds with prebiotic properties and suggest that the novel DFA-enriched caramel here reported may be an interesting candidate to be explored for the dietary treatment of human IBD.
British Journal of Nutrition | 2009
Belén Arribas; Maria Elena Rodríguez-Cabezas; Mònica Comalada; Elvira Bailón; Desirée Camuesco; Mónica Olivares; Jordi Xaus; Antonio Zarzuelo; Julio Gálvez
The preventative effects of the probiotic Lactobacillus fermentum CECT5716 were evaluated in the lipopolysaccharide (LPS) model of septic shock in mice. The probiotic was administered suspended in drinking water at the final concentration of 108 colony-forming units/ml for 2 weeks before the induction of an endotoxic shock by an intraperitoneal injection of LPS (400 microg/200 microl per mouse). Blood and different organs were collected after 24 h to evaluate the severity of the endotoxic shock and the preventative effects of the probiotic. L. fermentum reduced TNF-alpha levels in blood, which promotes the major alterations observed during septic shock, as well as the infiltration of activated neutrophils into the lungs. Furthermore, free radical overproduction and oxidative stress were associated with a significant decrease in hepatic glutathione levels in septic mice, and with an excessive NO production attributed to the induction of the inducible isoform of NO synthase (iNOS). In fact, hepatic glutathione levels were significantly increased in the group of mice receiving the probiotic, and the increased iNOS expression both in the colon and lungs was down-regulated in those mice treated with L. fermentum. Finally, pre-treatment with L. fermentum may also exert its protective action modulating the expression of different cytokines in splenocyte-derived T cells such us IL-2, IL-5, IL-6 or IL-10. In conclusion, pre-treatment with L. fermentum may exert its protective action against LPS-induced organ damage in mice by a combination of several actions including its antioxidant properties and by reduction of the synthesis of the pro-inflammatory TNF-alpha and IL-6.