Maria-Eleni Androutsou
University of Patras
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria-Eleni Androutsou.
Brain Sciences | 2017
Narges Dargahi; Maria Katsara; Theodore Tselios; Maria-Eleni Androutsou; Maximilian de Courten; John Matsoukas; Vasso Apostolopoulos
The treatment of multiple sclerosis (MS) has changed over the last 20 years. All immunotherapeutic drugs target relapsing remitting MS (RRMS) and it still remains a medical challenge in MS to develop a treatment for progressive forms. The most common injectable disease-modifying therapies in RRMS include β-interferons 1a or 1b and glatiramer acetate. However, one of the major challenges of injectable disease-modifying therapies has been poor treatment adherence with approximately 50% of patients discontinuing the therapy within the first year. Herein, we go back to the basics to understand the immunopathophysiology of MS to gain insights in the development of new improved drug treatments. We present current disease-modifying therapies (interferons, glatiramer acetate, dimethyl fumarate, teriflunomide, fingolimod, mitoxantrone), humanized monoclonal antibodies (natalizumab, ofatumumab, ocrelizumab, alemtuzumab, daclizumab) and emerging immune modulating approaches (stem cells, DNA vaccines, nanoparticles, altered peptide ligands) for the treatment of MS.
Journal of Computer-aided Molecular Design | 2010
George Agelis; Panagiota Roumelioti; Amalia Resvani; Serdar Durdagi; Maria-Eleni Androutsou; Konstantinos Kelaidonis; Demetrios Vlahakos; Thomas Mavromoustakos; John Matsoukas
A new 1,5 disubstituted imidazole AT1 Angiotensin II (AII) receptor antagonist related to losartan with reversion of butyl and hydroxymethyl groups at the 2-, 5-positions of the imidazole ring was synthesized and evaluated for its antagonist activity (V8). In vitro results indicated that the reorientation of butyl and hydroxymethyl groups on the imidazole template of losartan retained high binding affinity to the AT1 receptor concluding that the spacing of the substituents at the 2,5- positions is of primary importance. The docking studies are confirmed by binding assay results which clearly show a comparable binding score of the designed compound V8 with that of the prototype losartan. An efficient, regioselective and cost effective synthesis renders the new compound as an attractive candidate for advanced toxicological evaluation and a drug against hypertension.
Journal of Chemical Information and Modeling | 2013
Minos-Timotheos Matsoukas; Constantinos Potamitis; Panayiotis Plotas; Maria-Eleni Androutsou; George Agelis; John Matsoukas; Panagiotis Zoumpoulakis
This study investigates the binding of angiotensin II (AngII) to the angiotensin II type 1 receptor (AT1R), taking into consideration several known activation elements that have been observed for G-protein-coupled receptors (GPCRs). In order to determine the crucial interactions of AngII upon binding, several MD simulations were implemented using AngII conformations derived from experimental data (NMR ROEs) and in silico flexible docking methodologies. An additional goal was to simulate the induced activation mechanism and examine the already known structural rearrangements of GPCRs upon activation. Performing MD simulations to the AT1R - AngII - lipids complex, a series of dynamic changes in the topology of AngII and the intracellular part of the receptor were observed. Overall, the present study proposes a complete binding profile of AngII to the AT1R, as well as the key transitional elements of the receptor and the agonist peptide upon activation through NMR and in silico studies.
Bioorganic & Medicinal Chemistry | 2017
Vasso Apostolopoulos; George Deraos; Minos-Timotheos Matsoukas; Stephanie Day; Lily Stojanovska; Theodore Tselios; Maria-Eleni Androutsou; John Matsoukas
Amino acid mutations to agonist peptide epitopes of myelin proteins have been used to modulate immune responses and experimental autoimmune encephalomyelitis (EAE, animal model of multiple sclerosis). Such amino acid alteration are termed, altered peptide ligands (APL). We have shown that the agonist myelin basic protein (MBP) 87-99 epitope (MBP87-99) with crucial T cell receptor (TCR) substitutions at positions 91 and 96 (K91,P96 (TCR contact residues) to R91,A96; [R91,A96]MBP87-99) results in altered T cell responses and inhibits EAE symptoms. In this study, the role of citrullination of arginines in [R91,A96]MBP87-99 peptide analog was determined using in vivo experiments in combination with computational studies. The immunogenicity of linear [Cit91,A96,Cit97]MBP87-99 and its cyclic analog - cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 when conjugated to the carrier mannan (polysaccharide) were studied in SJL/J mice. It was found that mannosylated cyclo(87-99)[Cit91,A96,Cit97]MBP87-99 peptide induced strong T cell proliferative responses and IFN-gamma cytokine secretion compared with the linear one. Moreover, the interaction of linear and cyclic peptide analogs with the major histocompatibility complex (MHC II, H2-IAs) and TCR was analyzed using molecular dynamics simulations at the receptor level, in order to gain a better understanding of the molecular recognition mechanisms that underly the different immunological profiles of citrullinated peptides compared to its agonist native counterpart MBP87-99 epitope. The results demonstrate that the citrullination of arginine in combination with the backbone conformation of mutated linear and cyclic analogs are significant elements for the immune response triggering the induction of pro-inflammatory cytokines.
Frontiers in Immunology | 2015
Stephanie Day; Theodore Tselios; Maria-Eleni Androutsou; Anthi Tapeinou; Irene Frilligou; Lily Stojanovska; John Matsoukas; Vasso Apostolopoulos
Multiple sclerosis (MS) is a serious autoimmune demyelinating disease leading to loss of neurological function. The design and synthesis of various altered peptide ligands of immunodominant epitopes of myelin proteins to alter the autoimmune response, is a promising therapeutic approach for MS. In this study, linear and cyclic peptide analogs based on the myelin basic protein 83–99 (MBP83–99) immunodominant epitope conjugated to reduced mannan via the (KG)5 and keyhole limpet hemocyanin (KLH) bridge, respectively, were evaluated for their biological/immunological profiles in SJL/J mice. Of all the peptide analogs tested, linear MBP83–99(F91) and linear MBP83–99(Y91) conjugated to reduced mannan via a (KG)5 linker and cyclic MBP83–99(F91) conjugated to reduce mannan via KLH linker, yielded the best immunological profile and constitute novel candidates for further immunotherapeutic studies against MS in animal models and in human clinical trials.
Analytical Biochemistry | 2015
Anthi Tapeinou; Maria-Eleni Androutsou; Konstantina Kyrtata; Alexios Vlamis-Gardikas; Vasso Apostolopoulos; John Matsoukas; Theodore Tselios
The conjugation of polysaccharides to peptides is essential for antigen delivery and vaccine development. Herein, we show that tricine SDS-PAGE in combination with Coomassie Blue staining was adequate to determine the conjugation efficacy of a peptide (epitope 35-55 of myelin oligodendrocyte glycoprotein) to mannan. In addition, tricine SDS-PAGE and periodic acid-Schiff stains were able to monitor the redox state of mannan. Using the described protocol, more than 99.9% of a peptide containing five lysines at its N-terminus was confirmed conjugated to mannan.
Molecules | 2013
George Agelis; Konstantinos Kelaidonis; Amalia Resvani; Dimitra Kalavrizioti; Maria-Eleni Androutsou; Panagiotis Plotas; Demetrios Vlahakos; Catherine Koukoulitsa; Theodore Tselios; Thomas Mavromoustakos; John Matsoukas
In the present work, a facile and efficient route for the synthesis of a series of N-substituted imidazole derivatives is described. Docking studies have revealed that N-substituted imidazole derivatives based on (E)-urocanic acid may be potential antihypertensive leads. Therefore, new AT1 receptor blockers bearing either the benzyl or the biphenylmethyl moiety at the N-1 or N-3 position, either the (E)-acrylate or the propanoate fragment and their related acids at the C-4 position as well as a halogen atom at the C-5 position of the imidazole ring, were synthesized. The newly synthesized analogues were evaluated for binding to human AT1 receptor. The biological results showed that this class of molecules possesses moderate or no activity, thus not always confirming high docking scores. Nonetheless, important conclusions can be derived for their molecular basis of their mode of action and help medicinal chemists to design and synthesize more potent ones. An aliphatic group as in losartan seems to be important for enhancing binding affinity and activity.
Nephron | 2018
Diane Hatziioanou; Georgios Barkas; Elena Critselis; Jerome Zoidakis; Hariklia Gakiopoulou; Maria-Eleni Androutsou; Garyfalia Drossopoulou; Aristidis Charonis; Demetrios Vlahakos
Background: Hypertensive nephropathy, a leading cause of declining kidney function, is a multifactorial process not well understood. In order to elucidate biological processes and identify novel macromolecular components crucially involved in the process of kidney damage, the application of system biology approaches, like proteomics, is required. Methods: Proteomic studies were performed using the renal parenchyma of spontaneously hypertensive rats (SHR) and their normotensive Wistar Kyoto controls. Animals were sacrificed at early time intervals (6, 13, and 20 weeks after birth), the renal tissue extract was subjected to two-dimensional gel electrophoresis, differential expressed proteins were identified, and altered pathways were evaluated. One specific protein, chloride intracellular channel 4 (CLIC4), not implicated so far in the development of hypertension and nephrosclerosis, was further studied by Western blotting, immunohistochemistry and immunofluorescence. Results: Proteomic analysis identified several pathways/processes and organelles (mitochondria) as being affected from the early stages of hypertension. CLIC4 was overexpressed in SHR at all 3 time intervals examined. This finding was confirmed by Western blotting and by immunohistochemistry and immunofluorescence; these morphological techniques demonstrated that CLIC4 was almost exclusively localized at the apical surface of the proximal tubular epithelial cells. Conclusions: Our studies provide evidence that major changes occur in the renal parenchyma from early stages of the development of hypertension. The overexpression of CLIC4 suggests that alterations in the proximal tubular compartment during hypertension should be further examined and that CLIC4 may be a useful early marker of renal tubular alterations due to elevated blood pressure.
Medicinal Chemistry | 2018
Maria-Eleni Androutsou; Anthi Tapeinou; Alexios Vlamis-Gardikas; Theodore Tselios
BACKGROUND Myelin oligodendrocyte glycoprotein (MOG) is located on the external surface of myelin, a membranous component of the central nervous system (CNS) that forms the insulating lipid layer around neurons. The major MOG splicing variant (a1 transcript) encodes a transmembrane protein with an extracellular domain of an Ig variable (IgV) fold. MOG IgV domains from the same or different cells dimerize and contribute to the organization and maintenance of the myelin sheath in neurons. The encepalitogenic T cells recognize MOG and its immunodominant epitopes (epitopes 1-22, 35-55 and 92-106 located at the dimer interface) as foreign antigens and cause the destruction of myelin (demyelination) leading to the clinical condition known as multiple sclerosis (MS). Recognition of the antigen takes place in the context of the trimolecular complex formed by HLA, MOGpeptides and TCR. OBJECTIVE Understanding the role of MOG in MS. METHOD/RESULTS We have reviewed herein, the genomic organization of the human MOG gene, the structural characteristics of the MOG protein, the involvement of MOG in MS and clinical studies for the treatment of MS based on MOG peptide analogues. CONCLUSION Conjugates of antigenic MOG peptides to mannan and combinations of antigenic MOG and other peptides chemically linked to cells of the immune system may modify the immune response, alleviating in some cases the symptoms of MS.
Analytical Biochemistry | 2017
Christos Kontos; Maria-Eleni Androutsou; Alexios Vlamis-Gardikas; Theodore Tselios
The recovery of high molecular weight peptides from complex biological samples is a challenging task. Herein, a reliable, cost effective and rapid methodology was developed for the recovery and quantification of a myelin oligodendrocyte glycoprotein epitope namely (LysGly)5MOG35-55, from rat plasma. Removal of plasma proteins before quantification of the peptide was achieved after precipitation by an acetonitrile/water/formic acid solution. Using the developed protocol, average recoveries of the peptide from plasma ranged between 83.3 and 90.3%.