Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Erali is active.

Publication


Featured researches published by Maria Erali.


Experimental and Molecular Pathology | 2008

High resolution melting applications for clinical laboratory medicine

Maria Erali; Karl V. Voelkerding; Carl T. Wittwer

Separation of the two strands of DNA with heat (melting) is a fundamental property of DNA that is conveniently monitored with fluorescence. Conventional melting is performed after PCR on any real-time instrument to monitor product purity (dsDNA dyes) and sequence (hybridization probes). Recent advances include high resolution instruments and saturating DNA dyes that distinguish many different species. For example, mutation scanning (identifying heterozygotes) by melting is closed-tube and has similar or superior sensitivity and specificity compared to methods that require physical separation. With high resolution melting, SNPs can be genotyped without probes and more complex regions can be typed with unlabeled hybridization probes. Highly polymorphic HLA loci can be melted to establish sequence identity for transplantation matching. Simultaneous genotyping with one or more unlabeled probes and mutation scanning of the entire amplicon can be performed at the same time in the same tube, vastly decreasing or eliminating the need for re-sequencing in genetic analysis. High resolution PCR product melting is homogeneous, closed-tube, rapid (1-5 min), non-destructive and does not require covalently-labeled fluorescent probes. In the clinical laboratory, it is an ideal format for in-house testing, with minimal cost and time requirements for new assay development.


Methods | 2010

High Resolution Melting Analysis for Gene Scanning

Maria Erali; Carl T. Wittwer

High resolution melting is a new method of genotyping and variant scanning that can be seamlessly appended to PCR amplification. Limitations of genotyping by amplicon melting can be addressed by unlabeled probe or snapback primer analysis, all performed without labeled probes. High resolution melting can also be used to scan for rare sequence variants in large genes with multiple exons and is the focus of this article. With the simple addition of a heteroduplex-detecting dye before PCR, high resolution melting is performed without any additions, processing or separation steps. Heterozygous variants are identified by atypical melting curves of a different shape compared to wild-type homozygotes. Homozygous or hemizygous variants are detected by prior mixing with wild-type DNA. Design, optimization, and performance considerations for high resolution scanning assays are presented for rapid turnaround of gene scanning. Design concerns include primer selection and predicting melting profiles in silico. Optimization includes temperature gradient selection of the annealing temperature, random population screening for common variants, and batch preparation of primer plates with robotically deposited and dried primer pairs. Performance includes rapid DNA preparation, PCR, and scanning by high resolution melting that require, in total, only 3h when no variants are present. When variants are detected, they can be identified in an additional 3h by rapid cycle sequencing and capillary electrophoresis. For each step in the protocol, a general overview of principles is provided, followed by an in depth analysis of one example, scanning of CYBB, the gene that is mutated in X-linked chronic granulomatous disease.


American Journal of Clinical Pathology | 2007

Closed-tube SNP genotyping without labeled probes: A comparison between unlabeled probe and amplicon melting

Michael Liew; Michael T. Seipp; Jacob D. Durtschi; Rebecca L. Margraf; Shale Dames; Maria Erali; Karl V. Voelkerding; Carl T. Wittwer

Two methods for closed-tube single nucleotide polymorphism (SNP) genotyping without labeled probes have become available: unlabeled probe and amplicon melting. Unlabeled probe and amplicon melting assays were compared using 5 SNPs: human platelet antigens 1, 2, 5, and 15 and a C>T variant located 13910 base pairs (bp) upstream of the lactase gene. LCGreen Plus (Idaho Technology, Salt Lake City, UT) was used as the saturating DNA dye. Unlabeled probe data were readily interpretable and accurate for all amplicon lengths tested. Five targets that ranged in size from 42 to 72 bp were well resolved by amplicon melting on the LightScanner (Idaho Technology) or LightTyper (Roche, Indianapolis, IN) with no errors in genotyping. However, when larger amplicons (206 bp) were used and analyzed on lower resolution instruments (LightTyper and I-Cycler, Bio-Rad, Hercules, CA), the accuracy of amplicon genotyping was only 73% to 77%. When 2 temperature standards were used to bracket the amplicon of interest, the accuracy of amplicon genotyping of SNPs was increased to 100% (LightTyper) and 88% (I-Cycler).


Journal of Clinical Microbiology | 2001

Human Immunodeficiency Virus Type 1 Drug Resistance Testing: a Comparison of Three Sequence-Based Methods

Maria Erali; Sam Page; Larry G. Reimer; David R. Hillyard

ABSTRACT The use of genotypic assays for determining drug resistance in human immunodeficiency virus (HIV) type 1 (HIV-1)-infected patients is increasing. These tests lack standardization and validation. The aim of this study was to evaluate several tests used for the determination of HIV-1 drug resistance. Two genotypic tests, the Visible Genetics TruGene HIV-1 Genotyping Kit and the Applied Biosystems HIV Genotyping System, were compared using 22 clinical samples. Genotyping results were also obtained from an independent reference laboratory. The Visible Genetics and Applied Biosystems genotyping tests identified similar mutations when differences in the drug databases and reference strains were taken into account, and 19 of 21 samples were equivalent. The concordance between the two assays was 99% (249 of 252 mutation sites). Mutations identified by the reference laboratory varied the most among those identified by the three genotypic tests, possibly because of differences in the databases. The concordance of the reference laboratory results with the results of the other two assays was 80% (201 of 252). Samples with 500 to 750 HIV RNA copies/ml could be sequenced by the Visible Genetics and Applied Biosystems assays using 1 ml of input. The Visible Genetics and Applied Biosystems assays both generated an accurate sequence. However, the throughput of the Visible Genetics assay is more limited and may require additional instruments. The two assays differ technically but are similar in overall complexity. Data analysis in the two assays is straightforward, but only the reports provided by Visible Genetics contain information relating mutations to drug resistance. HIV drug resistance genotyping by sequencing is a complex technology which presents a challenge for analysis, interpretation, and reporting.


Clinical Chemistry | 2003

Evaluation of Electronic Microarrays for Genotyping Factor V, Factor II, and MTHFR

Maria Erali; Ben Schmidt; Elaine Lyon; Carl T. Wittwer

BACKGROUND Genetic risk factors associated with venous thrombosis include mutations in the factor V (Leiden), factor II (prothrombin), and methylenetetrahydrofolate reductase (MTHFR) genes. We evaluated a method using electronically addressable microarrays for the detection of mutations in these genes that have been associated with vascular disease. METHODS The NanoChip Molecular Biology Workstation (Nanogen) uses electronic microarrays for mutation detection. Factor V, factor II, and MTHFR genotypes identified in the NanoChip system on 225 samples were compared with genotypes from LightCycler assays (Roche). We determined within- and between-cartridge signal and ratio variation and analyzed the effect of additional mutations at or near the detection area used for the NanoChip assays. RESULTS Genotypes determined for all three mutations on the NanoChip platform were in complete concordance with LightCycler results. Within-cartridge signal variation as measured by the CV of fluorescence signals was <10% for each allele when present. The within-cartridge CV for heterozygous mutant/wild-type ratios was <8.5%, and between-cartridge CV was <18%. A dilution study showed that results could be obtained in this assay with 6 ng of nucleic acid per PCR, the lowest input tested. The presence of additional sequence variations near the expected mutations can produce equivocal or discrepant results. CONCLUSIONS Mutation detection using the NanoChip Molecular Biology Workstation was accurate and reproducible for the three assays evaluated.


Journal of Clinical Microbiology | 2004

Hepatitis C Genotyping by Denaturing High-Performance Liquid Chromatography

Michael Liew; Maria Erali; Sam Page; David R. Hillyard; Carl T. Wittwer

ABSTRACT Determination of the hepatitis C virus (HCV) genotype for infected patients increasingly has become accepted as the standard of care. Genotype assignment helps in assessing disease prognosis and assists in establishing the appropriate duration of treatment. The great genetic diversity of HCV, with 11 major genotypes and >70 subtypes, contributes to the technical difficulty of genotype testing. While the “gold standard” for testing is nucleic acid sequencing, a variety of hybridization assays, including the line probe assay, have been developed to provide more rapid and accessible forms of testing. The aim of this study was to determine whether denaturing high-performance liquid chromatography (dHPLC) could be used as a clinical method for distinguishing HCV genotypes 1, 2, 3, and 4. A portion of the 5′ untranslated region of the HCV genome was amplified by heminested multiplex reverse transcription PCR. The two amplicons then were analyzed by dHPLC analysis and compared to the genotypes determined by sequence analysis. After 115 specimens were analyzed as standards, 200 masked specimens (specimens whose identity was not known before testing) were analyzed to determine the concordance of the assay. The assay had a concordance of 96% at the genotype level and a concordance of 87% at the subtype level. However, the dHPLC method was not as accurate as other reported methods of HCV genotyping. This is the first time that HCV genotyping has been performed by dHPLC.


Journal of Clinical Microbiology | 2002

Performance characteristics of the COBAS Amplicor Hepatitis C Virus (HCV) Monitor, Version 2.0, International Unit assay and the National Genetics Institute HCV Superquant assay.

Eric Q. Konnick; Maria Erali; Edward R. Ashwood; David R. Hillyard

ABSTRACT The COBAS Amplicor Hepatitis C Virus (HCV) Monitor assay, version 2.0, which reports in international units per milliliter, was compared to the assay reported in copies per milliliter by analyzing dilution series and clinical plasma samples by both methods. In addition, the Amplicor international unit assay was compared to the National Genetics Institute HCV Superquant assay. The dilution series ranged from <100 to 5,000,000 HCV RNA copies/ml and consisted of 32 points, assayed in triplicate in each assay. Thirty clinical samples ranging from 1,000 to 1,000,000 HCV RNA copies/ml were assayed in duplicate. Deming regression analysis comparing the Amplicor HCV RNA international units-per-milliliter and copies-per-milliliter assays was calculated as follows: (Amplicor international units per milliliter) = 1.030(Amplicor copies per milliliter) − 0.392; R2 = 0.981; n = 28; Sy/x (standard error of the estimate) = 0.129. The linearity of the Amplicor international units-per-milliliter assay was as follows: observed = 0.886(expected) + 0.437; R2 = 0.983; n = 30. The linearity of the Superquant assay was as follows: observed= 0.918 (expected) + 0.436; R2 = 0.986; n = 32. Deming regression analysis comparing the Amplicor and Superquant assays was calculated as follows: Superquant = 1.066(Amplicor) − 0.0197; R2 = 0.908; Sy/x = 0.308; n = 28. The Amplicor and Superquant assays were linear through the range of 600 to 600,000 IU of HCV RNA/ml and ∼300 to 5,000,000 HCV RNA copies/ml, respectively. The narrow range of the Amplicor assay means that some samples will require dilution and retesting for accurate quantification above 600,000 IU of HCV RNA/ml. The Amplicor and Superquant assays agreed well within the range of 600 to 600,000 IU of HCV RNA/ml (∼1,000 to ∼1,000,000 HCV RNA copies/ml). Overall, the Amplicor and Superquant assays agree well, and results obtained in one assay could be expected to compare well with results from the other when reported in copies per milliliter.


Cytometry Part B-clinical Cytometry | 2005

HLA-B27 typing: evaluation of an allele-specific PCR melting assay and two flow cytometric antigen assays.

Michael T. Seipp; Maria Erali; Rae Lynn Wies; Carl T. Wittwer

Human leukocyte antigen B27 (HLA‐B27) is a major histocompatibility complex class 1 molecule that is strongly associated with the disease ankylosing spondylitis. Testing for HLA‐B27 is of diagnostic value because 90% of patients with ankylosing spondylitis have the B27 antigen. Two commonly used HLA‐B27 flow cytometric assays are commercially available.


Journal of Clinical Microbiology | 2004

Genotyping Hepatitis C Virus by Heteroduplex Mobility Analysis Using Temperature Gradient Capillary Electrophoresis

Rebecca L. Margraf; Maria Erali; Michael Liew; Carl T. Wittwer

ABSTRACT The genotype of the infecting hepatitis C virus (HCV) helps determine the patients prognosis and the duration of treatment. Heteroduplex mobility analysis (HMA) is a rapid, inexpensive method for genotyping of HCV that does not require sequencing. We developed an HMA that uses temperature gradient capillary electrophoresis (TGCE) to differentiate HCV genotypes. A 56-bp region of the HCV 5′ untranslated region (UTR) that was conserved within a genotype yet whose sequence differed between genotypes was amplified for HMA-TGCE analysis. HCV amplicons of types 1, 2a, 2b, 3a, 4, and 6a were hybridized in pairs and analyzed by TGCE. Amplicons hybridized to the same subtype yielded one homoduplex peak, while hybridization of different subtypes resulted in heteroduplexes and generated multiple TGCE peaks. Heteroduplexes contain thermodynamically unstable nucleotide mismatches that reduced their TGCE mobilities compared to those of homoduplexes. Three HCV subtypes (subtypes 1a, 3a, and 4) generated unique peak patterns when they were combined with each genotype analyzed and were chosen as the reference genotypes. A blinded study with 200 HCV-infected samples was 97% accurate compared to genotyping by 5′ UTR sequence analysis. The majority of discordant results were unexpected sequence variants; however, five of nine sequence variants were correctly genotyped. The assay also detected and correctly genotyped mixed HCV infections. Compared to conventional HMA, TGCE improves the resolution, with better separation of heteroduplexes and homoduplexes. All common HCV genotypes can be detected and differentiated by this HMA-TGCE assay.


Journal of Clinical Microbiology | 2005

Evaluation of the COBAS Amplicor HBV Monitor Assay and Comparison with the Ultrasensitive HBV Hybrid Capture 2 Assay for Quantification of Hepatitis B Virus DNA

Eric Q. Konnick; Maria Erali; Edward R. Ashwood; David R. Hillyard

ABSTRACT Performance characteristics of the COBAS Amplicor HBV Monitor test (Roche Diagnostics), which measures hepatitis B virus (HBV) DNA quantitatively, were evaluated and compared with the Ultrasensitive HBV Hybrid Capture 2 (HC2; Digene Corporation) assay. Linearity and within-run precision were assessed for both methods by using eight HBV DNA-positive samples serially diluted to obtain a range of <100 to 500,000 HBV DNA copies/ml and run in triplicate. Agreement between the methods was studied with 100 clinical samples. HC2 assay performance near the limit of detection was investigated through repeat testing of 149 samples with HC2 and testing of 37 samples with HC2 results of <4,700 HBV DNA copies/ml by Amplicor assay and a qualitative PCR assay. The linearity experiment for Amplicor had regression of observed values compared to expected values (y = 1.073x − 0.247; R2 = 0.993, n = 32; for HC2, y = 0.855x + 0.759, R2 = 0.729, n = 18). Within-run standard deviation of log HBV DNA copies/ml ranged from 0.003 to 0.348 (Amplicor) and 0.027 to 0.253 (HC2). Agreement assessed by Deming regression was poor [Amplicor = 1.197(HC2) − 0.961; R2 = 0.799, standard error of the estimate (SEE) = 0.710, n = 94]. Near the lower limit of detection, 32 of 149 repeat HC2 results were <4,700 HBV DNA copies/ml. Of the 37 samples with HC2 results of <4,700 HBV DNA copies/ml, HBV DNA was not detected in 15 samples, while HBV DNA was detected by at least one PCR method in 12 samples. Amplicor is linear from 200 to 200,000 HBV DNA copies/ml with undiluted samples, and this range can be expanded through dilution. Inconsistent HC2 results near the limit of detection justify use of a grey zone.

Collaboration


Dive into the Maria Erali's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge