Maria Eskevich
Dublin City University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Eskevich.
international conference on multimedia retrieval | 2013
Maria Eskevich; Gareth J. F. Jones; Robin Aly; Roeland Ordelman; Shu Chen; Danish Nadeem; Camille Guinaudeau; Guillaume Gravier; Pascale Sébillot; Tom De Nies; Pedro Debevere; Rik Van de Walle; Petra Galuščáková; Pavel Pecina; Martha Larson
Searching for relevant webpages and following hyperlinks to related content is a widely accepted and effective approach to information seeking on the textual web. Existing work on multimedia information retrieval has focused on search for individual relevant items or on content linking without specific attention to search results. We describe our research exploring integrated multimodal search and hyperlinking for multimedia data. Our investigation is based on the MediaEval 2012 Search and Hyperlinking task. This includes a known-item search task using the Blip10000 internet video collection, where automatically created hyperlinks link each relevant item to related items within the collection. The search test queries and link assessment for this task was generated using the Amazon Mechanical Turk crowdsourcing platform. Our investigation examines a range of alternative methods which seek to address the challenges of search and hyperlinking using multimodal approaches. The results of our experiments are used to propose a research agenda for developing effective techniques for search and hyperlinking of multimedia content.
IEEE MultiMedia | 2012
Martha Larson; Mohammad Soleymani; Maria Eskevich; Pavel Serdyukov; Roeland Ordelman; Gareth J. F. Jones
The MediaEval Multimedia Benchmark leveraged community cooperation and crowdsourcing to develop a large Internet video dataset for its Genre Tagging and Rich Speech Retrieval tasks.
european conference on information retrieval | 2012
Maria Eskevich; Walid Magdy; Gareth J. F. Jones
Search effectiveness for tasks where the retrieval units are clearly defined documents is generally evaluated using standard measures such as mean average precision (MAP). However, many practical speech search tasks focus on content within large spoken files lacking defined structure. These data must be segmented into smaller units for search which may only partially overlap with relevant material. We introduce two new metrics for the evaluation of search effectiveness for informally structured speech data: mean average segment precision (MASP) which measures retrieval performance in terms of both content segmentation and ranking with respect to relevance; and mean average segment distance-weighted precision (MASDWP) which takes into account the distance between the start of the relevant segment and the retrieved segment. We demonstrate the effectiveness of these new metrics on a retrieval test collection based on the AMI meeting corpus.
content based multimedia indexing | 2012
Maria Eskevich; Gareth J. F. Jones; Christian Wartena; Martha Larson; Robin Aly; Thijs Verschoor; Roeland Ordelman
We present an exploratory study of the retrieval of semiprofessional user-generated Internet video. The study is based on the MediaEval 2011 Rich Speech Retrieval (RSR) task for which the dataset was taken from the Internet sharing platform blip.tv, and search queries associated with specific speech acts occurring in the video. We compare results from three participant groups using: automatic speech recognition system transcript (ASR), metadata manually assigned to each video by the user who uploaded it, and their combination. RSR 2011 was a known-item search for a single manually identified ideal jump-in point in the video for each query where playback should begin. Retrieval effectiveness is measured using the MRR and mGAP metrics. Using different transcript segmentation methods the participants tried to maximize the rank of the relevant item and to locate the nearest match to the ideal jump-in point. Results indicate that best overall results are obtained for topically homogeneous segments which have a strong overlap with the relevant region associated with the jump-in point, and that use of metadata can be beneficial when segments are unfocused or cover more than one topic.
international world wide web conferences | 2013
Robin Aly; Roeland Ordelman; Maria Eskevich; Gareth J. F. Jones; Shu Chen
Although linking video to additional information sources seems to be a sensible approach to satisfy information needs of user, the perspective of users is not yet analyzed on a fundamental level in real-life scenarios. However, a better understanding of the motivation of users to follow links in video, which anchors users prefer to link from within a video, and what type of link targets users are typically interested in, is important to be able to model automatic linking of audiovisual content appropriately. In this paper we report on our methodology towards eliciting user requirements with respect to video linking in the course of a broader study on user requirements in searching and a series of benchmark evaluations on searching and linking.
international world wide web conferences | 2015
Roeland Ordelman; Maria Eskevich; Robin Aly; Benoit Huet; Gareth J. F. Jones
Multimedia hyperlinking is an emerging research topic in the context of digital libraries and (cultural heritage) archives. We have been studying the concept of video-to-video hyperlinking from a video search perspective in the context of the MediaEval evaluation benchmark for several years. Our task considers a use case of exploring large quantities of video content via an automatically created hyperlink structure at the media fragment level. In this paper we report on our findings, examine the features of the definition of video hyperlinking based on results, and discuss lessons learned with respect to evaluation of hyperlinking in real-life use scenarios.
acm multimedia | 2015
Maria Eskevich; Huynh Nguyen; Mathilde Sahuguet; Benoit Huet
Massive amounts of digital media is being produced and consumed daily on the Internet. Efficient access to relevant information is of key importance in contemporary society. The Hyper Video Browser provides multiple navigation means within the content of a media repository. Our system utilizes the state of the art multimodal content analysis and indexing techniques, at multiple temporal granularity, in order to satisfy the user need by suggesting relevant material. We integrate two intuitive interfaces: for search and browsing through the video archive, and for further hyperlinking to the related content while enjoying some video content. The novelty of this work includes a multi-faceted search and browsing interface for navigating in video collections and the dynamic suggestion of hyperlinks related to a media fragment content, rather than the entire video, being viewed. The approach was evaluated on the MediaEval Search and Hyperlinking task, demonstrating its effectiveness at locating accurately relevant content in a big media archive.
Computer Speech & Language | 2014
Maria Eskevich; Gareth J. F. Jones
Abstract Increasing amounts of informal spoken content are being collected, e.g. recordings of meetings, lectures and personal data sources. The amount of this content being captured and the difficulties of manually searching audio data mean that efficient automated search tools are of increasing importance if its full potential is to be realized. Much existing work on speech search has focused on retrieval of clearly defined document units in ad hoc search tasks. We investigate search of informal speech content using an extended version of the AMI meeting collection. A retrieval collection was constructed by augmenting the AMI corpus with a set of ad hoc search requests and manually identified relevant regions of the recorded meetings. Unlike standard ad hoc information retrieval focussing primarily on precision, we assume a recall-focused search scenario of a user seeking to retrieve a particular incident occurring within meetings relevant to the query. We explore the relationship between automatic speech recognition (ASR) accuracy, automated segmentation of the meeting into retrieval units and retrieval behaviour with respect to both precision and recall. Experimental retrieval results show that while averaged retrieval effectiveness is generally comparable in terms of precision for automatically extracted segments for manual content transcripts and ASR transcripts with high recognition accuracy, segments with poor recognition quality become very hard to retrieve and may fall below the retrieval rank position to which a user is willing search. These changes impact on system effectiveness for recall-focused search tasks. Varied ASR quality across the relevant and non-relevant data means that the rank of some well-recognized relevant segments is actually promoted for ASR transcripts compared to manual ones. This effect is not revealed by the averaged precision based retrieval evaluation metrics typically used for evaluation of speech retrieval. However such variations in the ranks of relevant segments can impact considerably on the experience of the user in terms of the order in which retrieved content is presented. Analysis of our results reveals that while relevant longer segments are generally more robust to ASR errors, and consequentially retrieved at higher ranks, this is often at the expense of the user needing to engage in longer content playback to locate the relevant content in the audio recording. Our overall conclusion being that it is desirable to minimize the length of retrieval units containing relevant content while seeking to maintain high ranking of these items.
conference on multimedia modeling | 2017
Maria Eskevich; Martha Larson; Robin Aly; Serwah Sabetghadam; Gareth J. F. Jones; Roeland Ordelman; Benoit Huet
Video-to-video linking systems allow users to explore and exploit the content of a large-scale multimedia collection interactively and without the need to formulate specific queries. We present a short introduction to video-to-video linking (also called ‘video hyperlinking’), and describe the latest edition of the Video Hyperlinking (LNK) task at TRECVid 2016. The emphasis of the LNK task in 2016 is on multimodality as used by videomakers to communicate their intended message. Crowdsourcing makes three critical contributions to the LNK task. First, it allows us to verify the multimodal nature of the anchors (queries) used in the task. Second, it enables us to evaluate the performance of video-to-video linking systems at large scale. Third, it gives us insights into how people understand the relevance relationship between two linked video segments. These insights are valuable since the relationship between video segments can manifest itself at different levels of abstraction.
acm multimedia | 2015
Roeland Ordelman; Robin Aly; Maria Eskevich; Benoit Huet; Gareth J. F. Jones
This paper overviews ongoing work that aims to support end-users in conveniently exploring and exploiting large audiovisual archives by deploying multiple multimodal linking approaches. We present ongoing work on multimodal video hyperlinking, from a perspective of unconstrained link anchor identification and based on the identification of named entities, and recent attempts to implement and validate the concept of outside-in linking that relates current events to archive content. Although these concepts are not new, current work is revealing novel insights, more mature technology, development of benchmark evaluations and emergence of dedicated workshops which are opening many interesting research questions on various levels that require closer collaboration between research communities.