María Esther Pérez-Pérez
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Esther Pérez-Pérez.
Autophagy | 2008
Sandra Díaz-Troya; María Esther Pérez-Pérez; Francisco J. Florencio; José L. Crespo
The target of rapamycin (TOR) is a conserved Ser/Thr kinase that controls cell growth by activating an array of anabolic processes including protein synthesis, transcription, and ribosome biogenesis, and by inhibiting catabolic processes such as mRNA degradation and autophagy. Control of autophagy by TOR occurs primarily at the induction step, and involves activation of the ATG1 kinase, a conserved component of the autophagic machinery. A substantial number of genes participating in autophagy have been originally identified in yeast. Most of these genes have mammalian homologues and many have apparent homologues in plants, indicating that autophagy is conserved among eukaryotes. The recent identification of TOR as a key element in cell growth control in plants and algae opens the way for future studies to investigate whether this signaling pathway may also control autophagy in photosynthetic organisms.
Frontiers in Plant Science | 2013
Laure Michelet; Mirko Zaffagnini; Samuel Morisse; Francesca Sparla; María Esther Pérez-Pérez; Francesco Francia; Antoine Danon; Christophe Marchand; Simona Fermani; Paolo Trost; Stéphane D. Lemaire
Reversible redox post-translational modifications such as oxido-reduction of disulfide bonds, S-nitrosylation, and S-glutathionylation, play a prominent role in the regulation of cell metabolism and signaling in all organisms. These modifications are mainly controlled by members of the thioredoxin and glutaredoxin families. Early studies in photosynthetic organisms have identified the Calvin–Benson cycle, the photosynthetic pathway responsible for carbon assimilation, as a redox regulated process. Indeed, 4 out of 11 enzymes of the cycle were shown to have a low activity in the dark and to be activated in the light through thioredoxin-dependent reduction of regulatory disulfide bonds. The underlying molecular mechanisms were extensively studied at the biochemical and structural level. Unexpectedly, recent biochemical and proteomic studies have suggested that all enzymes of the cycle and several associated regulatory proteins may undergo redox regulation through multiple redox post-translational modifications including glutathionylation and nitrosylation. The aim of this review is to detail the well-established mechanisms of redox regulation of Calvin–Benson cycle enzymes as well as the most recent reports indicating that this pathway is tightly controlled by multiple interconnected redox post-translational modifications. This redox control is likely allowing fine tuning of the Calvin–Benson cycle required for adaptation to varying environmental conditions, especially during responses to biotic and abiotic stresses.
Plant Physiology | 2010
María Esther Pérez-Pérez; Francisco J. Florencio; José L. Crespo
Autophagy is a catabolic membrane-trafficking process whereby cells recycle cytosolic proteins and organelles under stress conditions or during development. This degradative process is mediated by autophagy-related (ATG) proteins that have been described in yeast, animals, and more recently in plants. In this study, we report the molecular characterization of autophagy in the unicellular green alga Chlamydomonas reinhardtii. We demonstrate that the ATG8 protein from Chlamydomonas (CrATG8) is functionally conserved and may be used as a molecular autophagy marker. Like yeast ATG8, CrATG8 is cleaved at the carboxyl-terminal conserved glycine and is associated with membranes in Chlamydomonas. Cell aging or different stresses such as nutrient limitation, oxidative stress, or the accumulation of misfolded proteins in the endoplasmic reticulum caused an increase in CrATG8 abundance as well as the detection of modified forms of this protein, both landmarks of autophagy activation. Furthermore, rapamycin-mediated inhibition of the Target of Rapamycin signaling pathway, a major regulator of autophagy in eukaryotes, results in identical effects on CrATG8 and a relocalization of this protein in Chlamydomonas cells similar to the one observed upon nutrient limitation. Thus, our findings indicate that Chlamydomonas cells may respond to stress conditions by inducing autophagy via Target of Rapamycin signaling modulation.
Plant Physiology | 2012
María Esther Pérez-Pérez; Stéphane D. Lemaire; José L. Crespo
Reactive oxygen species (ROS) and autophagy have been historically associated with cell death. However, more recent evidence indicates that both ROS and autophagy play important roles in signaling and cellular adaptation to stress. As a catabolic process, autophagy allows eukaryotic cells to recycle intracellular components including entire organelles during development or under stress conditions such as nutrient limitation. Degradation and recycling of macromolecules via autophagy provides a source of building blocks (amino acids, lipids and sugars) that allow temporal adaptation of cells to adverse conditions. In addition to recycling, autophagy is required for the degradation of damaged or toxic material that can be generated as a result of ROS accumulation during oxidative stress. The mitochondrial electron-transport chain and the peroxisomes are primary sources of ROS production in most eukaryotes. The plant cell contains an additional organelle, the chloroplast, with an intense electron flow that leads to high rates of ROS production. Studies in plants and algae have demonstrated that autophagy is structurally and functionally conserved in photosynthetic organisms and plays an important role in the cellular response and adaptation to different stress conditions that involve generation of ROS such as oxidative and drought stresses, pathogen infection or photo-oxidative damage. These findings suggested a strong link between autophagy and ROS in photosynthetic eukaryotes. Here we review recent studies in plants and algae describing redox control of autophagy and discuss about conserved regulatory proteins that may transmit redox signals to the autophagic machinery.
The Plant Cell | 2012
Consolación Álvarez; Irene García; Inmaculada Moreno; María Esther Pérez-Pérez; José L. Crespo; Luis C. Romero; Cecilia Gotor
This article highlights the role of hydrogen sulfide as a relevant signaling molecule in plants, of comparable importance as described in animals. This study shows the regulatory role of sulfide generated by the cytosolic l-Cys desulfhydrase 1 enzyme on autophagy in eukaryotes. In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis.
Photosynthesis Research | 2006
Francisco J. Florencio; María Esther Pérez-Pérez; Luis López-Maury; Alejandro Mata-Cabana; Marika Lindahl
Cyanobacteria perform oxygenic photosynthesis, which makes them unique among the prokaryotes, and this feature together with their abundance and worldwide distribution renders them a central ecological role. Cyanobacteria and chloroplasts of plants and algae are believed to share a common ancestor and the modern chloroplast would thus be the remnant of an endosymbiosis between a eukaryotic cell and an ancestral oxygenic photosynthetic prokaryote. Chloroplast metabolic processes are coordinated with those of the other cellular compartments and are strictly controlled by means of regulatory systems that commonly involve redox reactions. Disulphide/dithiol exchange catalysed by thioredoxin is a fundamental example of such regulation and represents the molecular mechanism for light-dependent redox control of an ever-increasing number of chloroplast enzymatic activities. In contrast to chloroplast thioredoxins, the functions of the cyanobacterial thioredoxins have long remained elusive, despite their common origin. The sequenced genomes of several cyanobacterial species together with novel experimental approaches involving proteomics have provided new tools for re-examining the roles of the thioredoxin systems in these organisms. Thus, each cyanobacterial genome encodes between one and eight thioredoxins and all components necessary for the reduction of thioredoxins. Screening for thioredoxin target proteins in cyanobacteria indicates that assimilation and storage of nutrients, as well as some central metabolic pathways, are regulated by mechanisms involving disulphide/dithiol exchange, which could be catalysed by thioredoxins or related thiol-containing proteins.
Journal of Bacteriology | 2009
María Esther Pérez-Pérez; Alejandro Mata-Cabana; Ana María Sánchez-Riego; Marika Lindahl; Francisco J. Florencio
Cyanobacteria perform oxygenic photosynthesis, which gives rise to the continuous production of reactive oxygen species, such as superoxide anion radicals and hydrogen peroxide, particularly under unfavorable growth conditions. Peroxiredoxins, which are present in both chloroplasts and cyanobacteria, constitute a class of thiol-dependent peroxidases capable of reducing hydrogen peroxide as well as alkyl hydroperoxides. Chloroplast peroxiredoxins have been studied extensively and have been found to use a variety of endogenous electron donors, such as thioredoxins, glutaredoxins, or cyclophilin, to sustain their activities. To date, however, the endogenous reduction systems for cyanobacterial peroxiredoxins have not been systematically studied. We have expressed and purified all five Synechocystis sp. strain PCC 6803 peroxiredoxins, which belong to the classes 1-Cys Prx, 2-Cys Prx, type II Prx (PrxII), and Prx Q, and we have examined their capacities to interact with and receive electrons from the m-, x-, and y-type thioredoxins from the same organism, which are called TrxA, TrxB, and TrxQ, respectively. Assays for peroxidase activity demonstrated that all five enzymes could use thioredoxins as electron donors, whereas glutathione and Synechocystis sp. strain PCC 6803 glutaredoxins were inefficient. The highest catalytic efficiency was obtained for the couple consisting of PrxII and TrxQ thioredoxin. Studies of transcript levels for the peroxiredoxins and thioredoxins under different stress conditions highlighted the similarity between the PrxII and TrxQ thioredoxin expression patterns.
Autophagy | 2012
María Esther Pérez-Pérez; Inmaculada Couso; José L. Crespo
All aerobic organisms have developed sophisticated mechanisms to prevent, detect and respond to cell damage caused by the unavoidable production of reactive oxygen species (ROS). Plants and algae are able to synthesize specific pigments in the chloroplast called carotenoids to prevent photo-oxidative damage caused by highly reactive by-products of photosynthesis. In this study we used the unicellular green alga Chlamydomonas reinhardtii to demonstrate that defects in carotenoid biosynthesis lead to the activation of autophagy, a membrane-trafficking process that participates in the recycling and degradation of damaged or toxic cellular components. Carotenoid depletion caused by either the mutation of phytoene synthase or the inhibition of phytoene desaturase by the herbicide norflurazon, resulted in a strong induction of autophagy. We found that high light transiently activates autophagy in wild-type Chlamydomonas cells as part of an adaptation response to this stress. Our results showed that a Chlamydomonas mutant defective in the synthesis of specific carotenoids that accumulate during high light stress exhibits constitutive autophagy. Moreover, inhibition of the ROS-generating NADPH oxidase partially reduced the autophagy induction associated to carotenoid deficiency, which revealed a link between photo-oxidative damage, ROS accumulation and autophagy activation in Chlamydomonas cells with a reduced carotenoid content.
The Plant Cell | 2014
Silvia Ramundo; David Casero; Timo Mühlhaus; Dorothea Hemme; Frederik Sommer; Michèle Crèvecoeur; Michèle Rahire; Michael Schroda; Jannette Rusch; Ursula Goodenough; Matteo Pellegrini; María Esther Pérez-Pérez; José L. Crespo; Olivier Schaad; Natacha Civic; Jean-David Rochaix
Conditional depletion of the chloroplast protease ClpP in the alga Chlamydomonas affects plastid protein homeostasis and leads to an autophagocytic and plastid unfolded protein-like response. It involves vacuolization of the cytoplasm and increased accumulation of small heat shock proteins, specific chaperones, proteases, and proteins implicated in thylakoid membrane maintenance and biogenesis. Plastid protein homeostasis is critical during chloroplast biogenesis and responses to changes in environmental conditions. Proteases and molecular chaperones involved in plastid protein quality control are encoded by the nucleus except for the catalytic subunit of ClpP, an evolutionarily conserved serine protease. Unlike its Escherichia coli ortholog, this chloroplast protease is essential for cell viability. To study its function, we used a recently developed system of repressible chloroplast gene expression in the alga Chlamydomonas reinhardtii. Using this repressible system, we have shown that a selective gradual depletion of ClpP leads to alteration of chloroplast morphology, causes formation of vesicles, and induces extensive cytoplasmic vacuolization that is reminiscent of autophagy. Analysis of the transcriptome and proteome during ClpP depletion revealed a set of proteins that are more abundant at the protein level, but not at the RNA level. These proteins may comprise some of the ClpP substrates. Moreover, the specific increase in accumulation, both at the RNA and protein level, of small heat shock proteins, chaperones, proteases, and proteins involved in thylakoid maintenance upon perturbation of plastid protein homeostasis suggests the existence of a chloroplast-to-nucleus signaling pathway involved in organelle quality control. We suggest that this represents a chloroplast unfolded protein response that is conceptually similar to that observed in the endoplasmic reticulum and in mitochondria.
Autophagy | 2014
María Esther Pérez-Pérez; Mirko Zaffagnini; Christophe Marchand; José L. Crespo; Stéphane D. Lemaire
Autophagy is a membrane-trafficking process whereby double-membrane vesicles called autophagosomes engulf and deliver intracellular material to the vacuole for degradation. Atg4 is a cysteine protease with an essential function in autophagosome formation. Mounting evidence suggests that reactive oxygen species may play a role in the control of autophagy and could regulate Atg4 activity but the precise mechanisms remain unclear. In this study, we showed that reactive oxygen species activate autophagy in the model yeast Saccharomyces cerevisiae and unraveled the molecular mechanism by which redox balance controls Atg4 activity. A combination of biochemical assays, redox titrations, and site-directed mutagenesis revealed that Atg4 is regulated by oxidoreduction of a single disulfide bond between Cys338 and Cys394. This disulfide has a low redox potential and is very efficiently reduced by thioredoxin, suggesting that this oxidoreductase plays an important role in Atg4 regulation. Accordingly, we found that autophagy activation by rapamycin was more pronounced in a thioredoxin mutant compared with wild-type cells. Moreover, in vivo studies indicated that Cys338 and Cys394 are required for the proper regulation of autophagosome biogenesis, since mutation of these cysteines resulted in increased recruitment of Atg8 to the phagophore assembly site. Thus, we propose that the fine-tuning of Atg4 activity depending on the intracellular redox state may regulate autophagosome formation.