Maria Eyman
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Eyman.
Neuroscience & Biobehavioral Reviews | 2003
Damiana Leo; Eleonora Sorrentino; Floriana Volpicelli; Maria Eyman; Dario Greco; Davide Viggiano; Umberto di Porzio; Carla Perrone-Capano
To understand the onset and the molecular mechanisms triggering dopaminergic (DA) dysregulation in Attention-Deficit Hyperactivity Disorder (ADHD), we have used the Spontaneously Hypertensive Rats (SHR), the most widely studied animal model for this disease. We have studied the pattern of expression of specific genes involved in DA neuron differentiation, survival and function during postnatal (P) development of the ventral midbrain in SHR males. Our results show that tyrosine hydroxylase and DA transporter gene expression are significantly and transiently reduced in the SHR midbrain during the first month of postnatal development, although with a different kinetic. The other genes analyzed do not show significant variation between SHR and control rats. In addition, high-affinity DA uptake activity is significantly reduced in synaptosomes obtained from the striatum of 1-month-old SHR, when compared to controls. Our data suggest that down-regulation of DA neurotransmission occurs in the midbrain of SHR in a developmentally regulated temporal window during postnatal development, thus strengthening the hypodopaminergic hypothesis in the pathogenesis of ADHD.
Journal of Neuroscience Research | 2001
Anthony E. Gioio; Maria Eyman; Hengshan Zhang; Zeno Scotto Lavina; Antonio Giuditta; Barry B. Kaplan
One of the central tenets in neuroscience has been that the protein constituents of distal compartments of the neuron (e.g., the axon and nerve terminal) are synthesized in the nerve cell body and are subsequently transported to their ultimate sites of function. In contrast to this postulate, we have established previously that a heterogeneous population of mRNAs and biologically active polyribosomes exist in the giant axon and presynaptic nerve terminals of the photoreceptor neurons in squid. We report that these mRNA populations contain mRNAs for nuclear‐encoded mitochondrial proteins to include: cytochrome oxidase subunit 17, propionyl‐CoA carboxylase (EC 6.4.1.3), dihydrolipoamide dehydrogenase (EC 1.8.1.4), and coenzyme Q subunit 7. The mRNA for heat shock protein 70, a chaperone protein known to be involved in the import of proteins into mitochondria, has also been identified. Electrophoretic gel analysis of newly synthesized proteins in the synaptosomal fraction isolated from the squid optic lobe revealed that the large presynaptic terminals of the photoreceptor neuron contain a cytoplasmic protein synthetic system. Importantly, a significant amount of the cycloheximide resistant proteins locally synthesized in the terminal becomes associated with mitochondria. PCR analysis of RNA from synaptosomal polysomes establishes that COX17 and CoQ7 mRNAs are being actively translated. Taken together, these findings indicate that proteins required for the maintenance of mitochondrial function are synthesized locally in the presynaptic nerve terminal, and call attention to the intimacy of the relationship between the terminal and its energy generating system. J. Neurosci. Res. 64:447–453, 2001. Published 2001 Wiley‐Liss, Inc.
Physiological Reviews | 2008
Antonio Giuditta; Jong Tai Chun; Maria Eyman; Carolina Cefaliello; Anna Paola Bruno; Marianna Crispino
Neurons have complex and often extensively elongated processes. This unique cell morphology raises the problem of how remote neuronal territories are replenished with proteins. For a long time, axonal and presynaptic proteins were thought to be exclusively synthesized in the cell body, which delivered them to peripheral sites by axoplasmic transport. Despite this early belief, protein has been shown to be synthesized in axons and nerve terminals, substantially alleviating the trophic burden of the perikaryon. This observation raised the question of the cellular origin of the peripheral RNAs involved in protein synthesis. The synthesis of these RNAs was initially attributed to the neuron soma almost by default. However, experimental data and theoretical considerations support the alternative view that axonal and presynaptic RNAs are also transcribed in the flanking glial cells and transferred to the axon domain of mature neurons. Altogether, these data suggest that axons and nerve terminals are served by a distinct gene expression system largely independent of the neuron cell body. Such a local system would allow the neuron periphery to respond promptly to environmental stimuli. This view has the theoretical merit of extending to axons and nerve terminals the marginalized concept of a glial supply of RNA (and protein) to the neuron cell body. Most long-term plastic changes requiring de novo gene expression occur in these domains, notably in presynaptic endings, despite their intrinsic lack of transcriptional capacity. This review enlightens novel perspectives on the biology and pathobiology of the neuron by critically reviewing these issues.
Journal of Neurochemistry | 2002
Connie R. Jimenez; Maria Eyman; Z. Scotto Lavina; A. Gioio; K.W. Li; R.C. van der Schors; W.P.M. Geraerts; Antonio Giuditta; Barry B. Kaplan; J. Van Minnen
A proteomics approach was used to identify the translation products of a unique synaptic model system, squid optic lobe synaptosomes. Unlike its vertebrate counterparts, this preparation is largely free of perikaryal cell fragments and consists predominantly of pre‐synaptic terminals derived from retinal photoreceptor neurones. We metabolically labelled synaptosomes with [35S]methionine and applied two‐dimensional gel electrophoresis to resolve newly synthesized proteins at high resolution. Autoradiographs of blotted two‐dimensional gels revealed de novo synthesis of about 80 different proteins, 18 of which could be matched to silver‐stained gels that were run in parallel. In‐gel digestion of the matched spots and mass spectrometric analyses revealed the identities of various cytosolic enzymes, cytoskeletal proteins, molecular chaperones and nuclear‐encoded mitochondrial proteins. A number of novel proteins (i.e. not matching with database sequences) were also detected. In situ hybridization was employed to confirm the presence of mRNA and rRNA in synaptosomes. Together, our data show that pre‐synaptic endings of squid photoreceptor neurones actively synthesize a wide variety of proteins involved in synaptic functioning, such as transmitter recycling, energy supply and synaptic architecture.
European Journal of Neuroscience | 2007
Maria Eyman; Carolina Cefaliello; Eugenia Ferrara; Rosanna De Stefano; Zeno Scotto Lavina; Marianna Crispino; Angela Squillace; Jan Van Minnen; Barry B. Kaplan; Antonio Giuditta
The presence of active systems of protein synthesis in axons and nerve endings raises the question of the cellular origin of the corresponding RNAs. Our present experiments demonstrate that, besides a possible derivation from neuronal cell bodies, axoplasmic RNAs originate in periaxonal glial cells and presynaptic RNAs derive from nearby cells, presumably glial cells. Indeed, in perfused squid giant axons, delivery of newly synthesized RNA to the axon perfusate is strongly stimulated by axonal depolarization or agonists of glial glutamate and acetylcholine receptors. Likewise, incubation of squid optic lobe slices with [3H]uridine leads to a marked accumulation of [3H]RNA in the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons. As the cell bodies of these neurons lie outside the optic lobe, the data demonstrate that presynaptic RNA is locally synthesized, presumably by perisynaptic glial cells. Overall, our results support the view that axons and presynaptic regions are endowed with local systems of gene expression which may prove essential for the maintenance and plasticity of these extrasomatic neuronal domains.
European Journal of Neuroscience | 2004
Anthony E. Gioio; Zeno Scotto Lavina; Dana Jurkovicova; Hengshan Zhang; Maria Eyman; Antonio Giuditta; Barry B. Kaplan
It is now well established that the distal structural/functional domains of the neuron contain 2a diverse population of mRNAs that program the local synthesis of protein. However, there is still a paucity of information on the composition and function of these mRNA populations in the adult nervous system. To generate empirically, hypotheses regarding the function of the local protein synthetic system, we have compared the mRNAs present in the squid giant axon and its parental cell bodies using differential mRNA display as an unbiased screen. The results of this screen facilitated the identification of 31 mRNAs that encoded cytoskeletal proteins, translation factors, ribosomal proteins, molecular motors, metabolic enzymes, nuclear‐encoded mitochondrial mRNAs, and a molecular chaperone. Results of cell fractionation and RT‐PCR analyses established that several of these mRNAs were present in polysomes present in the presynaptic nerve terminal of photoreceptor neurons, indicating that these mRNAs were being actively translated. Findings derived from in vitro transfection studies established that these isolated nerve terminals had the ability to translate a heterologous reporter mRNA. Based upon these data, it is hypothesized that the local protein synthetic system plays an important role in the maintenance/remodelling of the cytoarchitecture of the axon and nerve terminal, maintenance of the axon transport and mRNA translation systems, as well as contributing to the viability and function of the local mitochondria.
Journal of Neuroscience Research | 1997
Jong-Tai Chun; Anthony E. Gioio; Marianna Crispino; Maria Eyman; Antonio Giuditta; Barry B. Kaplan
Previously, we reported the presence of a heterogeneous population of mRNAs in the squid giant axon. The construction of a cDNA library to this mRNA population has facilitated the identification of several of the constituent mRNAs which encode several cytoskeletal and motor proteins as well as enolase, a glycolytic enzyme. In this communication, we report the isolation of a novel mRNA species (pA6) from the axonal cDNA library. The pA6 mRNA is relatively small (550 nucleotides in length) and is expressed in both nervous tissue and skeletal muscle. The axonal localization of pA6 mRNA was unequivocally established by in situ hybridization histochemistry. The results of quantitative RT‐PCR analysis indicate that there are 1.8 × 106 molecules of pA6 mRNA (≈0.45 pg) in the analyzed segment of the giant axon and suggest that the level of pA6 mRNA in the axonal domain of the giant fiber system might be equal to or greater than the level present in the parental cell soma. Sequence analysis of pA6 suggests that the mRNA encodes an integral membrane protein comprising 84 amino acids. The putative protein contains a single transmembrane domain located in the middle of the molecule and a phosphate‐binding loop situated near the N terminus. The C‐terminal region of the protein contains two potential phosphorylation sites. These four structural motifs manifest striking similarity to domains present in the ryanodine receptor, raising the possibility that pA6 represents a cephalopod intracellular calcium release channel protein. J. Neurosci. Res. 49:144–153, 1997. © 1997 Wiley‐Liss, Inc.
Brain Research | 2007
Maria Eyman; Carolina Cefaliello; Eugenia Ferrara; Rosanna De Stefano; Marianna Crispino; Antonio Giuditta
Synaptosomes from rat brain have long been used to investigate the properties of synaptic protein synthesis. Comparable analyses have now been made in adult male rats trained for a two-way active avoidance task to examine the hypothesis of its direct participation in brain plastic events. Using Ficoll-purified synaptosomes from neocortex, hippocampus and cerebellum, our data indicate that the capacity of synaptosomal protein synthesis and the specific activity of newly synthesized proteins were not different in trained rats in comparison with home-caged control rats. On the other hand, the synthesis of two proteins of 66.5 kDa and 87.6 kDa separated by SDS-PAGE and analyzed by quantitative densitometry was selectively enhanced in trained rats. In addition, the synthesis of the 66.5 kDa protein, but not of the 87.6 kDa protein, correlated with avoidances and escapes and inversely correlated with freezings in the neocortex, while in the cerebellum it correlated with avoidances and escapes. The data demonstrate the participation of synaptic protein synthesis in plastic events of behaving rats, and the selective, region-specific modulation of the synthesis of a synaptic 66.5 kDa protein by the newly acquired avoidance response and by the reprogramming of innate neural circuits subserving escape and freezing responses.
Neuroscience Letters | 2003
Maria Eyman; Marianna Crispino; Barry B. Kaplan; Antonio Giuditta
Nerve endings of squid photoreceptor neurons generate large synaptosomes upon homogenization of the optic lobe. Using several independent methods, these presynaptic structures have been shown to synthesize a wealth of soluble, cytoskeletal and nuclear encoded mitochondrial proteins, and to account for essentially all the translation activity of the synaptosomal fraction. We are now presenting evidence that calexcitin, a learning related, Ca(2+)-binding protein of the B photoreceptors of Hermissenda crassicornis (a mollusk), is synthesized and subjected to post-translational modifications in the squid photoreceptor terminals. In view of the essential role of presynaptic protein synthesis in long-term memory formation in Aplysia, our data suggest that a comparable role may be played by calexcitin synthesized in the squid photoreceptor terminals.
Journal of Neuroscience Research | 2012
Maria Eyman; Carolina Cefaliello; Paola Mandile; Stefania Piscopo; Marianna Crispino; Antonio Giuditta
We have previously shown that the local synthesis of two synaptic proteins of 66.5‐kDa and 87.6‐kDa is selectively enhanced in male adult rats trained for a two‐way active avoidance task. We report here that a comparable but not identical response occurs in 2‐year‐old male rats trained for the same task. In the latter age group, the local synthesis of the 66.5‐kDa protein markedly increases in cerebral cortex, brainstem, and cerebellum, with a somewhat lower increment in synthesis of the 87.6‐kDa protein. On the other hand, the newly synthesized 87.6‐kDa protein correlates with avoidances and escapes and inversely correlates with freezings in cerebral cortex and brainstem, whereas the correlations of the newly synthesized 66.5‐kDa protein remain below significance. These correlative patterns are sharply at variance with those present in trained adult rats. Our data confirm that the local system of synaptic protein synthesis is selectively modulated by training and show that the synaptic response of old rats differs from that of adult rats as reflected in behavioral responses.