Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María F. Fillat is active.

Publication


Featured researches published by María F. Fillat.


Environmental Microbiology | 2008

Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806.

Emma Sevilla; Beatriz Martin-Luna; Laura Vela; M. Teresa Bes; María F. Fillat; M. Luisa Peleato

Microcystins are toxins produced by cyanobacteria that entail serious health and environmental problems. They are cyclic heptapeptides synthesized via a mixed polyketide synthase/non-ribosomal peptide synthetase system called microcystin synthetase. Environmental and nutritional factors that trigger microcystin synthesis are still debated and this work deals with the study of the influence of iron nutritional status on the microcystin synthesis. The results indicate that iron deficiency could be one of the inducing factors of the microcystin synthesis. For the first time, increased transcription of an essential mcy gene and correlative microcystin synthesis has been established. Real-time PCR analysis of mcyD, and microcystin-LR synthesis were studied on Microcystis aeruginosa PCC7806 grown in iron-replete and iron-deplete media. Iron starvation causes an increase of mcyD transcription, correlative to the increase of microcystin-LR levels. Four transcription start points were identified for mcyD and two for mcyA, and they are not changed as a consequence of iron deficiency.


Archives of Biochemistry and Biophysics | 2014

The FUR (ferric uptake regulator) superfamily: Diversity and versatility of key transcriptional regulators

María F. Fillat

Control of metal homeostasis is essential for life in all kingdoms. In most prokaryotic organisms the FUR (ferric uptake regulator) family of transcriptional regulators is involved in the regulation of iron and zinc metabolism through control by Fur and Zur proteins. A third member of this family, the peroxide-stress response PerR, is present in most Gram-positives, establishing a tight functional interaction with the global regulator Fur. These proteins play a pivotal role for microbial survival under adverse conditions and in the expression of virulence in most pathogens. In this paper we present the current state of the art in the knowledge of the FUR family, including those members only present in more reduced numbers of bacteria, namely Mur, Nur and Irr. The huge amount of work done in the two last decades shows that FUR proteins present considerable diversity in their regulatory mechanisms and interesting structural differences. However, much work needs to be done to obtain a more complete picture of this family, especially in connection with the roles of some members as gas and redox sensors as well as to fully characterize their participation in bacterial adaptative responses.


The Plant Cell | 2006

Functional replacement of ferredoxin by a cyanobacterial flavodoxin in tobacco confers broad-range stress tolerance.

Vanesa B. Tognetti; Javier F. Palatnik; María F. Fillat; Michael Melzer; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo

Chloroplast ferredoxin (Fd) plays a pivotal role in plant cell metabolism by delivering reducing equivalents to various essential oxidoreductive pathways. Fd levels decrease under adverse environmental conditions in many microorganisms, including cyanobacteria, which share a common ancestor with chloroplasts. Conversely, stress situations induce the synthesis of flavodoxin (Fld), an electron carrier flavoprotein not found in plants, which can efficiently replace Fd in most electron transfer processes. We report here that chloroplast Fd also declined in plants exposed to oxidants or stress conditions. A purified cyanobacterial Fld was able to mediate plant Fd-dependent reactions in vitro, including NADP+ and thioredoxin reduction. Tobacco (Nicotiana tabacum) plants expressing Fld in chloroplasts displayed increased tolerance to multiple sources of stress, including redox-cycling herbicides, extreme temperatures, high irradiation, water deficit, and UV radiation. Oxidant buildup and oxidative inactivation of thioredoxin-dependent plastidic enzymes were decreased in stressed plants expressing plastid-targeted Fld, suggesting that development of the tolerant phenotype relied on productive interaction of this flavoprotein with Fd-dependent oxidoreductive pathways of the host, most remarkably, thioredoxin reduction. The use of Fld provides new tools to investigate the requirements of photosynthesis in planta and to increase plant stress tolerance based on the introduction of a cyanobacterial product that is free from endogenous regulation in higher plants.


Photosynthesis Research | 1990

Consequences of the iron-dependent formation of ferredoxin and flavodoxin on photosynthesis and nitrogen fixation on Anabaena strains

Gerhard Sandmann; Maria Luisa Peleato; María F. Fillat; M. C. Lázaro; Carlos Gómez-Moreno

Iron-dependent formation of ferredoxin and flavodoxin was determined in Anabaena ATCC 29413 and ATCC 29211 by a FPLC procedure. In the first species ferredoxin is replaced by flavodoxin at low iron levels in the vegetative cells only. In the heterocysts from Anabaena ATCC 29151, however, flavodoxin is constitutively formed regardless of the iron supply.Replacement of ferredoxin by flavodoxin had no effect on photosynthetic electron transport, whereas nitrogen fixation was decreased under low iron conditions. As ferredoxin and flavodoxin exhibited the same Km values as electron donors to nitrogenase, an iron-limited synthesis of active nitrogenase was assumed as the reason for inhibited nitrogen fixation. Anabaena ATCC 29211 generally lacks the potential to synthesize flavodoxin. Under iron-starvation conditions, ferredoxin synthesis is limited, with a negative effect on photosynthetic oxygen evolution.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Enhanced plant tolerance to iron starvation by functional substitution of chloroplast ferredoxin with a bacterial flavodoxin

Vanesa B. Tognetti; Matias D. Zurbriggen; Eligio N. Morandi; María F. Fillat; Estela M. Valle; Mohammad-Reza Hajirezaei; Néstor Carrillo

Iron limitation affects one-third of the cultivable land on Earth and represents a major concern for agriculture. It causes decline of many photosynthetic components, including the Fe-S protein ferredoxin (Fd), involved in essential oxidoreductive pathways of chloroplasts. In cyanobacteria and some algae, Fd down-regulation under Fe deficit is compensated by induction of an isofunctional electron carrier, flavodoxin (Fld), a flavin mononucleotide-containing protein not found in plants. Transgenic tobacco lines expressing a cyanobacterial Fld in chloroplasts were able to grow in Fe-deficient media that severely compromised survival of WT plants. Fld expression did not improve Fe uptake or mobilization, and stressed transformants elicited a normal deficit response, including induction of ferric-chelate reductase and metal transporters. However, the presence of Fld did prevent decrease of several photosynthetic proteins (but not Fd) and partially protected photosynthesis from inactivation. It also preserved the activation state of enzymes depending on the Fd-thioredoxin pathway, which correlated with higher levels of intermediates of carbohydrate metabolism and the Calvin cycle, as well as increased contents of sucrose, glutamate, and other amino acids. These metabolic routes depend, directly or indirectly, on the provision of reduced Fd. The results indicate that Fld could compensate Fd decline during episodes of Fe deficiency by productively interacting with Fd-dependent pathways of the host, providing fresh genetic resources for the design of plants able to survive in Fe-poor lands.


Archives of Microbiology | 1988

Flavodoxin from the nitrogen-fixing cyanobacterium Anabaena PCC 7119

María F. Fillat; Gerhard Sandmann; Carlos Gómez-Moreno

Flavodoxin has been isolated and purified from cultures of the cyanobacterium Anabaena cultivated in a low-iron medium. This flavoprotein has a molecular weight of 20,000 and contains 1 molecule of flavin mononucleotide per mol of protein. Various biochemical characteristics are reported including amino-acid composition, isoelectric point and the fluorescence properties of the apoprotein. The extinction coefficients and isosbestic points were determined for the oxidized and semiquinone forms of flavodoxin. The electron paramagnetic resonance spectrum of the semiquinone exhibited a spectral linewidth of 23 G, which is typical for a neutral flavoprotein semiquinone. Kinetic measurements give a rate constant of 9.6×107 (M-1 min-1) for the reduction of flavodoxin in the photosynthetic electron-transport chain by the photosystem I and 6.6×106 for the reaction in which flavodoxin is reduced by ferredoxin-NADP+ oxidoreductase. The Michaelis constant for electron donation to nitrogenase by reduced flavodoxin is 8.5 μM.


Trends in Biotechnology | 2008

Combating stress with flavodoxin: a promising route for crop improvement

Matias D. Zurbriggen; Vanesa B. Tognetti; María F. Fillat; Mohammad-Reza Hajirezaei; Estela M. Valle; Néstor Carrillo

Environmental stresses and iron limitation are the primary causes of crop losses worldwide. Engineering strategies aimed at gaining stress tolerance have focused on overexpression of endogenous genes belonging to molecular networks for stress perception or responses. Based on the typical response of photosynthetic microorganisms to stress, an alternative approach has been recently applied with considerable success. Ferredoxin, a stress-sensitive target, was replaced in tobacco chloroplasts by an isofunctional protein, a cyanobacterial flavodoxin, which is absent in plants. Resulting transgenic lines showed wide-range tolerance to drought, chilling, oxidants, heat and iron starvation. The survival of plants under such adverse conditions would be an enormous agricultural advantage and makes this novel strategy a potentially powerful biotechnological tool for the generation of multiple-tolerant crops in the near future.


FEBS Letters | 1999

Constitutive and nitrogen-regulated promoters of the petH gene encoding ferredoxin:NADP+ reductase in the heterocyst-forming cyanobacterium Anabaena sp.

Ana Valladares; Alicia M. Muro-Pastor; María F. Fillat; Antonia Herrero; Enrique Flores

Determination of the putative transcription start points of the petH gene encoding ferredoxin:NADP+ reductase in the heterocyst‐forming cyanobacteria Anabaena sp. PCC 7119 and PCC 7120 showed that this gene is transcribed from two promoters, one constitutively used under different conditions of nitrogen nutrition and the other one used in cells subjected to nitrogen stepdown and in nitrogen‐fixing filaments. The latter promoter, whose use was NtcA‐dependent but HetR‐independent, was functional in heterocysts. The N‐control transcriptional regulator NtcA was observed to bind in vitro to this promoter. For the sake of comparison, the transcription start points of the nifHDK operon in strain PCC 7120 and binding of NtcA to the nifHDK promoter were also examined.


Ecotoxicology | 2010

Microcystin-LR synthesis as response to nitrogen: transcriptional analysis of the mcyD gene in Microcystis aeruginosa PCC7806

Emma Sevilla; Beatriz Martin-Luna; Laura Vela; M. Teresa Bes; M. Luisa Peleato; María F. Fillat

The influence of environmental factors on microcystin production by toxic cyanobacteria has been extensively studied. However, the effect of nitrogen on the synthesis of this toxin remains unclear because of the literature contradictory data. The aim of this work was to determine how nitrate affects the transcriptional response of mcyD gene and the microcystin-LR synthesis in Microcystisaeruginosa PCC 7806. For first time real time RT-PCR has been used to investigate the effect of nitrogen availability. Our results show that, under laboratory conditions, an excess of nitrate triggers Microcystisaeruginosa growth without increasing the synthesis of microcystin-LR per cell. The concentration of microcystin in the cultures correlates with mcyD gene expression, being both parameters independent of nitrate availability. Analysis of the bidirectional promoter mcy unravels that the transcription start points of mcyA and mcyD genes did not change under different nitrate regimes. The effect of nitrate inputs in the development of toxic blooms is primarily due to the increased growth rate and population, not to the induction of the mcy operon.


Environmental Science & Technology | 2013

Identification of Free-Living Amoebae and Amoeba-Associated Bacteria from Reservoirs and Water Treatment Plants by Molecular Techniques

A. García; Pilar Goñi; Joanna Cieloszyk; María Teresa Fernández; Laura Calvo-Begueria; Encarnación Rubio; María F. Fillat; Maria Luisa Peleato; Antonio Clavel

The occurrence of free-living amoebae (FLA) was investigated in 83 water samples from reservoirs and water treatment plants, with culture positive in 64 of them (77.1%). Polymerase chain reaction (PCR) of partial 18S rRNA gene and ITS region was performed in order to identify amoeba isolates, and the presence of Legionella pneumophila , Mycobacterium spp., Pseudomonas spp., and Microcystis aeruginosa was investigated in 43 isolates of amoebae by multiplex PCR. Of the isolated amoebae, 31 were Acanthamoeba spp., 21 were Hartmannella vermiformis, 13 were Naegleria spp., and one was Vanella spp. T2, T4, and T5 genotypes of Acanthamoeba have been identified, and T4 isolates were grouped into five subgenotypes and graphically represented with a Weblog application. Inside amoebae, L. pneumophila was detected in 13.9% (6/43) of the isolates, and Pseudomonas spp. and Mycobacterium spp. were detected in 32.6% (14/43) and 41.9% (18/43), respectively. No statistical correlation was demonstrated between FLA isolation and seasonality, but the presence of intracellular bacteria was associated with warm water temperatures, and also the intracellular presence of Mycobacterium spp. and Pseudomonas spp. were associated. These results highlight the importance of amoebae in natural waters as reservoirs of potential pathogens and its possible role in the spread of bacterial genera with interest in public and environmental health.

Collaboration


Dive into the María F. Fillat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge