Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria F. Gomez is active.

Publication


Featured researches published by Maria F. Gomez.


Endocrinology | 2009

Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice.

Ulrika E.A. Mårtensson; S Albert Salehi; Sara H. Windahl; Maria F. Gomez; Karl Swärd; Joanna Daszkiewicz-Nilsson; A. Wendt; Niklas Andersson; Per Hellstrand; Per-Olof Grände; Christer Owman; Clifford J. Rosen; Martin L. Adamo; Ingmar Lundquist; Patrik Rorsman; Bengt-Olof Nilsson; Claes Ohlsson; Björn Olde; L. M. Fredrik Leeb-Lundberg

In vitro studies suggest that the G protein-coupled receptor (GPR) 30 is a functional estrogen receptor. However, the physiological role of GPR30 in vivo is unknown, and it remains to be determined whether GPR30 is an estrogen receptor also in vivo. To this end, we studied the effects of disrupting the GPR30 gene in female and male mice. Female GPR30((-/-)) mice had hyperglycemia and impaired glucose tolerance, reduced body growth, increased blood pressure, and reduced serum IGF-I levels. The reduced growth correlated with a proportional decrease in skeletal development. The elevated blood pressure was associated with an increased vascular resistance manifested as an increased media to lumen ratio of the resistance arteries. The hyperglycemia and impaired glucose tolerance in vivo were associated with decreased insulin expression and release in vivo and in vitro in isolated pancreatic islets. GPR30 is expressed in islets, and GPR30 deletion abolished estradiol-stimulated insulin release both in vivo in ovariectomized adult mice and in vitro in isolated islets. Our findings show that GPR30 is important for several metabolic functions in female mice, including estradiol-stimulated insulin release.


Circulation Research | 2003

Cholesterol Depletion Impairs Vascular Reactivity to Endothelin-1 by Reducing Store-Operated Ca2+ Entry Dependent on TRPC1

Andreas Bergdahl; Maria F. Gomez; Karl Dreja; Shang-Zhong Xu; Mikael Adner; David J. Beech; Jonas Broman; Per Hellstrand; Karl Swärd

Abstract— The reactivity of the vascular wall to endothelin-1 (ET-1) is influenced by cholesterol, which is of possible importance for the progression of atherosclerosis. To elucidate signaling steps affected, the cholesterol acceptor methyl-&bgr;-cyclodextrin (m&bgr;cd, 10 mmol/L) was used to manipulate membrane cholesterol and disrupt caveolae in intact rat arteries. In endothelium-denuded caudal artery, contractile responsiveness to 10 nmol/L ET-1 (mediated by the ETA receptor) was reduced by m&bgr;cd and increased by cholesterol. Neither ligand binding nor colocalization of ETA and caveolin-1 was affected by m&bgr;cd. Ca2+ inflow via store-operated channels after depletion of intracellular Ca2+ stores was reduced in m&bgr;cd-treated caudal arteries, as shown by Mn2+ quench rate and intracellular [Ca2+] response. Expression of TRPC1, 3, and 6 was detected by reverse transcriptase–polymerase chain reaction, and colocalization of TRPC1 with caveolin-1 was reduced by m&bgr;cd, as seen by immunofluorescence. Part of the contractile response to ET-1 was inhibited by Ni2+ (0.5 mmol/L) and by a TRPC1 blocking antibody. In the basilar artery, exhibiting less store-operated channel activity than the caudal artery, ET-1–induced contractions were insensitive to the TRPC1 blocking antibody and to m&bgr;cd. Increased store-operated channel activity in basilar arteries after organ culture correlated with increased sensitivity of ET-1 contraction to m&bgr;cd. These results suggest that cholesterol influences vascular reactivity to ET-1 by affecting the caveolar localization of TRPC1.


Circulation Research | 2006

Upregulated TRPC1 Channel in Vascular Injury In Vivo and Its Role in Human Neointimal Hyperplasia

Bhaskar Kumar; Karl Dreja; Samir S. Shah; Alex Cheong; Shang-Zhong Xu; Piruthivi Sukumar; Jacqueline Naylor; Amalia Forte; Marilena Cipollaro; Damian McHugh; Paul A. Kingston; Anthony M. Heagerty; Christopher Munsch; Andreas Bergdahl; Anna Hultgårdh-Nilsson; Maria F. Gomez; Karen E. Porter; Per Hellstrand; David J. Beech

Occlusive vascular disease is a widespread abnormality leading to lethal or debilitating outcomes such as myocardial infarction and stroke. It is part of atherosclerosis and is evoked by clinical procedures including angioplasty and grafting of saphenous vein in bypass surgery. A causative factor is the switch in smooth muscle cells to an invasive and proliferative mode, leading to neointimal hyperplasia. Here we reveal the importance to this process of TRPC1, a homolog of Drosophila transient receptor potential. Using 2 different in vivo models of vascular injury in rodents we show hyperplasic smooth muscle cells have upregulated TRPC1 associated with enhanced calcium entry and cell cycle activity. Neointimal smooth muscle cells after balloon angioplasty of pig coronary artery also express TRPC1. Furthermore, human vein samples obtained during coronary artery bypass graft surgery commonly exhibit an intimal structure containing smooth muscle cells that expressed more TRPC1 than the medial layer cells. Veins were organ cultured to allow growth of neointimal smooth muscle cells over a 2-week period. To explore the functional relevance of TRPC1, we used a specific E3-targeted antibody to TRPC1 and chemical blocker 2-aminoethoxydiphenyl borate. Both agents significantly reduced neointimal growth in human vein, as well as calcium entry and proliferation of smooth muscle cells in culture. The data suggest upregulated TRPC1 is a general feature of smooth muscle cells in occlusive vascular disease and that TRPC1 inhibitors have potential as protective agents against human vascular failure.


Journal of Biological Chemistry | 2002

Opposing actions of inositol 1,4,5-trisphosphate and ryanodine receptors on nuclear factor of activated T-cells regulation in smooth muscle.

Maria F. Gomez; Andra S. Stevenson; Adrian D. Bonev; David C. Hill-Eubanks; Mark T. Nelson

The nuclear factor of activated T-cells (NFAT), originally identified in T-cells, has since been shown to play a role in mediating Ca2+-dependent gene transcription in diverse cell types outside of the immune system. We have previously shown that nuclear accumulation of NFATc3 is induced in ileal smooth muscle by platelet-derived growth factor in a manner that depends on Ca2+ influx through L-type, voltage-dependent Ca2+ channels. Here we show that NFATc3 is also the predominant NFAT isoform expressed in cerebral artery smooth muscle and is induced to accumulate in the nucleus by UTP and other Gq/11-coupled receptor agonists. This induction is mediated by calcineurin and is dependent on sarcoplasmic reticulum Ca2+ release through inositol 1,4,5-trisphosphate receptors and extracellular Ca2+ influx through L-type, voltage-dependent Ca2+ channels. Consistent with results obtained in ileal smooth muscle, depolarization-induced Ca2+ influx fails to induce NFAT nuclear accumulation in cerebral arteries. We also provide evidence that Ca2+release by ryanodine receptors in the form of Ca2+ sparks may exert an inhibitory influence on UTP-induced NFATc3 nuclear accumulation and further suggest that UTP may act, in part, by inhibiting Ca2+ sparks. These results are consistent with a multifactorial regulation of NFAT nuclear accumulation in smooth muscle that is likely to involve several intracellular signaling pathways, including local effects of sarcoplasmic reticulum Ca2+release and effects attributable to global elevations in intracellular Ca2+.


Trends in Cardiovascular Medicine | 2003

NFAT regulation in smooth muscle.

David C. Hill-Eubanks; Maria F. Gomez; Andra S. Stevenson; Mark T. Nelson

First identified in activated T cells, the calcium (Ca2+)-dependent transcription factor, nuclear factor of activated T cells (NFAT), has since been shown to play a role in nonimmune cells, including cells of the cardiovascular system. In arterial smooth muscle, the diverse array of calcium-signaling modalities, the functional interplay between smooth muscle and endothelial cells, and the influence of intravascular pressure on calcium and other signaling pathways creates a calcium-regulatory environment that is arguably unique. This review focuses on mechanisms that control the initial Ca2+/calcineurin-dependent events in NFAT activation, with a particular emphasis on NFAT regulation in native vascular smooth muscle. Also addressed is the role of additional mechanisms that act to modulate calcineurin-dependent NFAT nuclear import/export, mechanisms that may have particular relevance in this tissue.


Alimentary Pharmacology & Therapeutics | 2012

Infliximab salvage therapy after failure of ciclosporin in corticosteroid-refractory ulcerative colitis: a multicentre study

María Chaparro; Paula Burgueno; Eva Iglesias; Julián Panés; Fernando Muñoz; G. Bastida; Luisa de Castro; Carlos Jimenez; Jorge Mendoza; M. Barreiro-de Acosta; S. Gómez Senent; Fernando Gomollón; Xavier Calvet; Esther Garcia-Planella; Maria F. Gomez; Vicent Hernandez; Joaquín Hinojosa; Míriam Mañosa; O. Pérez Nyssen; Javier P. Gisbert

Aliment Pharmacol Ther 2012; 35: 275–283


PLOS ONE | 2010

Vascular cellular adhesion molecule-1 (VCAM-1) expression in mice retinal vessels is affected by both hyperglycemia and hyperlipidemia.

Carin Gustavsson; Carl-David Agardh; Anna V. Zetterqvist; Jan Nilsson; Elisabet Agardh; Maria F. Gomez

Background Inflammation has been proposed to be important in the pathogenesis of diabetic retinopathy. An early feature of inflammation is the release of cytokines leading to increased expression of endothelial activation markers such as vascular cellular adhesion molecule-1 (VCAM-1). Here we investigated the impact of diabetes and dyslipidemia on VCAM-1 expression in mouse retinal vessels, as well as the potential role of tumor necrosis factor-α (TNFα). Methodology/Principal Findings Expression of VCAM-1 was examined by confocal immunofluorescence microscopy in vessels of wild type (wt), hyperlipidemic (ApoE−/−) and TNFα deficient (TNFα−/−, ApoE−/−/TNFα−/−) mice. Eight weeks of streptozotocin-induced diabetes resulted in increased VCAM-1 in wt mice, predominantly in small vessels (<10 µm). Diabetic wt mice had higher total retinal TNFα, IL-6 and IL-1β mRNA than controls; as well as higher soluble VCAM-1 (sVCAM-1) in plasma. Lack of TNFα increased higher basal VCAM-1 protein and sVCAM-1, but failed to up-regulate IL-6 and IL-1β mRNA and VCAM-1 protein in response to diabetes. Basal VCAM-1 expression was higher in ApoE−/− than in wt mice and both VCAM-1 mRNA and protein levels were further increased by high fat diet. These changes correlated to plasma cholesterol, LDL- and HDL-cholesterol, but not to triglycerides levels. Diabetes, despite further increasing plasma cholesterol in ApoE−/− mice, had no effects on VCAM-1 protein expression or on sVCAM-1. However, it increased ICAM-1 mRNA expression in retinal vessels, which correlated to plasma triglycerides. Conclusions/Significance Hyperglycemia triggers an inflammatory response in the retina of normolipidemic mice and up-regulation of VCAM-1 in retinal vessels. Hypercholesterolemia effectively promotes VCAM-1 expression without evident stimulation of inflammation. Diabetes-induced endothelial activation in ApoE−/− mice seems driven by elevated plasma triglycerides but not by cholesterol. Results also suggest a complex role for TNFα in the regulation of VCAM-1 expression, being protective under basal conditions but pro-inflammatory in response to diabetes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

High Glucose Activates Nuclear Factor of Activated T Cells in Native Vascular Smooth Muscle

Jenny Nilsson; Lisa M Nilsson; Yung-Wu Chen; Jeffery D. Molkentin; David Erlinge; Maria F. Gomez

Objective—Hyperglycemia has been suggested to play a role in the development of vascular disease associated with diabetes. Atypical Ca2+ signaling and gene expression are characteristic of vascular dysfunction; however, little is known regarding the effects of high glucose on Ca2+-dependent transcription in the vascular wall. Methods and Results—Using confocal immunofluorescence, we show that modest elevation of extracellular glucose (ie, from 2 to 11.5 mmol/L) increased [Ca2+]i, leading to nuclear accumulation of nuclear factor of activated T cells (NFAT) in intact cerebral arteries from mouse. This was accompanied by increased NFAT-dependent transcriptional activity. Both the increase in Ca2+ and NFAT activation were prevented by the ectonucleotidase apyrase, suggesting a mechanism involving the release of extracellular nucleotides. We provide evidence that the potent vasoconstrictors and growth stimulators UTP and UDP mediate glucose-induced NFAT activation via P2Y receptors. NFAT nuclear accumulation was inhibited by the voltage-dependent Ca2+ channel blockers verapamil and nifedipine, the calcineurin inhibitor cyclosporine A, and the novel NFAT blocker A-285222. High glucose also regulated glycogen synthase kinase 3&bgr; and c-Jun N-terminal kinase activity, yielding decreased kinase activity and reduced export of NFAT from the nucleus, providing additional mechanisms underlying the glucose-induced NFAT activation. Conclusions—Our results identify the calcineurin/NFAT signaling pathway as a potential metabolic sensor for the arterial smooth muscle response to high glucose.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

Molecular Mechanisms of Collagen Isotype-Specific Modulation of Smooth Muscle Cell Phenotype

A. Wayne Orr; Monica Y. Lee; Julia A. Lemmon; Arif Yurdagul; Maria F. Gomez; Pamela D. Schoppee Bortz; Brian R. Wamhoff

Objective—Smooth muscle cell (SMC) phenotypic modulation, an important component of atherosclerosis progression, is critically regulated by the matrix, with normal components of the healthy SMC matrix limiting modulation and atherosclerosis-associated transitional matrix proteins promoting phenotypic modulation. We sought to determine how collagen IV (which comprises the healthy artery wall) and monomeric collagen I (which comprises atherosclerotic lesions) differentially affect SMC phenotype. Methods and Results—Plating SMCs on collagen IV resulted in elevated expression of SMC contractility proteins compared to collagen I. Concurrent with enhanced contractile gene expression, collagen IV stimulates binding of SRF to CArG boxes in the promoters of smooth muscle actin and smooth muscle myosin heavy chain. Coll IV also stimulated the expression of myocardin, a critical SRF coactivator required to drive expression of SMC specific genes. In contrast to collagen IV, collagen I stimulated enhanced expression of the inflammatory protein vascular cell adhesion molecule (VCAM)-1. NF-&kgr;B and NFAT-binding sites in the VCAM-1 promoter are critical for collagen I–mediated expression of VCAM-1 promoter activity. However, only inhibitors of NFAT, not NF-&kgr;B, were able to reduce collagen I–associated VCAM expression, and collagen I but not collagen IV stimulated NFAT transcriptional activity. Conclusion—These results show for the first time that collagen IV and collagen I differentially affect smooth muscle phenotypic modulation through multiple pathways.


Diabetes | 2011

Pleiotropic Effects of GIP on Islet Function Involve Osteopontin

Valeriya Lyssenko; Lena Eliasson; Olga Kotova; Kasper Pilgaard; Nils Wierup; Albert Salehi; A. Wendt; Anna Maria Jönsson; Yang De Marinis; Lisa Berglund; Jalal Taneera; Alexander Balhuizen; Ola Hansson; Peter Osmark; Pontus Dunér; Charlotte Brøns; Alena Stančáková; Johanna Kuusisto; Marco Bugliani; Richa Saxena; Emma Ahlqvist; Timothy J. Kieffer; Tiinamaija Tuomi; Bo Isomaa; Olle Melander; Emily Sonestedt; Marju Orho-Melander; Peter Nilsson; Sara Bonetti; Riccardo C. Bonadonna

OBJECTIVE The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic β-cell function by potentiating insulin secretion and β-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function. RESEARCH DESIGN AND METHODS Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies. Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of β-cell viability and proliferation. RESULTS The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells. CONCLUSIONS These findings support β-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional β-cell mass in humans.

Collaboration


Dive into the Maria F. Gomez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge