Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Fatima Grossi-de-Sa is active.

Publication


Featured researches published by Maria Fatima Grossi-de-Sa.


BMC Plant Biology | 2010

Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data.

Sinara Artico; Sarah Muniz Nardeli; Osmundo Brilhante; Maria Fatima Grossi-de-Sa; Marcio Alves-Ferreira

BackgroundNormalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes.ResultsBy the use of two distinct algorithms, implemented by geNorm and NormFinder, we have assessed the gene expression of nine candidate reference genes in cotton: GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3 and GhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression of GhPP2A1 and GhUBQ14 genes were the most stable across all samples and also when distinct plants organs are examined. GhACT4 and GhUBQ14 present more stable expression during flower development, GhACT4 and GhFBX6 in the floral verticils and GhMZA and GhPTB during fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development.ConclusionWe have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use of GhUBQ14 and GhPP2A1 housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs; GhACT4 and GhUBQ14 for flower development, GhACT4 and GhFBX6 for the floral organs and GhMZA and GhPTB for fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.


Molecular Breeding | 2009

Evaluation of coffee reference genes for relative expression studies by quantitative real-time RT-PCR

Fernanda F. Cruz; Samara Kalaoun; Paula Macedo Nobile; Carlos Colombo; Juliana D. De Almeida; Leila M.G. Barros; Eduardo Romano; Maria Fatima Grossi-de-Sa; Maite F. S. Vaslin; Marcio Alves-Ferreira

Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus drought-stressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here.


FEBS Journal | 2008

Plant–pathogen interactions: what is proteomics telling us?

Angela Mehta; Ana C. M. Brasileiro; Djair S.L. Souza; Eduardo Romano; Magnólia A. Campos; Maria Fatima Grossi-de-Sa; Marilia Santos Silva; Octávio L. Franco; Rodrigo da Rocha Fragoso; Rosangela Bevitori; Thales L. Rocha

Over the years, several studies have been performed to analyse plant–pathogen interactions. Recently, functional genomic strategies, including proteomics and transcriptomics, have contributed to the effort of defining gene and protein function and expression profiles. Using these ‘omic’ approaches, pathogenicity‐ and defence‐related genes and proteins expressed during phytopathogen infections have been identified and enormous datasets have been accumulated. However, the understanding of molecular plant–pathogen interactions is still an intriguing area of investigation. Proteomics has dramatically evolved in the pursuit of large‐scale functional assignment of candidate proteins and, by using this approach, several proteins expressed during phytopathogenic interactions have been identified. In this review, we highlight the proteins expressed during plant–virus, plant–bacterium, plant–fungus and plant–nematode interactions reported in proteomic studies, and discuss these findings considering the advantages and limitations of current proteomic tools.


Biochemistry Research International | 2011

Antibacterial Peptides from Plants: What They Are and How They Probably Work

Patrícia B. Pelegrini; Rafael Perseghini Del Sarto; Osmar N. Silva; Octavio L. Franco; Maria Fatima Grossi-de-Sa

Plant antibacterial peptides have been isolated from a wide variety of species. They consist of several protein groups with different features, such as the overall charge of the molecule, the content of disulphide bonds, and structural stability under environmental stress. Although the three-dimensional structures of several classes of plant peptides are well determined, the mechanism of action of some of these molecules is still not well defined. However, further studies may provide new evidences for their function on bacterial cell wall. Therefore, this paper focuses on plant peptides that show activity against plant-pathogenic and human-pathogenic bacteria. Furthermore, we describe the folding of several peptides and similarities among their three-dimensional structures. Some hypotheses for their mechanisms of action and attack on the bacterial membrane surface are also proposed.


The FASEB Journal | 2011

Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms

Elizabete de Souza Cândido; Michelle F. S. Pinto; Patrícia B. Pelegrini; Thais Bergamin Lima; Osmar N. Silva; Robert Pogue; Maria Fatima Grossi-de-Sa; Octávio L. Franco

Storage proteins perform essential roles in plant survival, acting as molecular reserves important for plant growth and maintenance, as well as being involved in defense mechanisms by virtue of their properties as insecticidal and antimicrobial proteins. These proteins accumulate in storage vacuoles inside plant cells, and, in response to determined signals, they may be used by the different plant tissues in response to pathogen attack. To shed some light on these remarkable proteins with dual functions, storage proteins found in germinative tissues, such as seeds and kernels, and in vegetative tissues, such as tubercles and leaves, are extensively discussed here, along with the related mechanisms of protein expression. Among these proteins, we focus on 2S albumins, Kunitz proteinase inhibitors, plant lectins, glycine‐rich proteins, vicilins, patatins, tarins, and ocatins. Finally, the potential use of these molecules in development of drugs to combat human and plant pathogens, contributing to the development of new biotechnology‐based medications and products for agribusiness, is also presented.—De Souza Cândido, E., Pinto, M. F. S., Pelegrini, P. B., Lima, T. B., Silva, O. N., Pogue, R., Grossi‐de‐Sá, M. F., Franco, O. L. Plant storage proteins with antimicrobial activity: novel insights into plant defense mechanisms. FASEB J. 25, 3290–3305 (2011). www.fasebj.org


Frontiers in Microbiology | 2014

Antifungal defensins and their role in plant defense

Ariane F. Lacerda; Érico Augusto Rosas Vasconcelos; Patrícia B. Pelegrini; Maria Fatima Grossi-de-Sa

Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term “plant defensin,” after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.


Phytochemistry | 2003

Effects of black-eyed pea trypsin/chymotrypsin inhibitor on proteolytic activity and on development of Anthonomus grandis

Octávio L. Franco; Roseane Cavalcanti dos Santos; João A. N. Batista; Ana Cristina M. Mendes; Marcus Aurélio Miranda Araújo; Rose Gomes Monnerat; Maria Fatima Grossi-de-Sa; Sonia Maria de Freitas

The cotton boll weevil Anthonomus grandis (Boheman) is one of the major pests of cotton (Gossypium hirsutum L.) in tropical and sub-tropical areas of the New World. This feeds on cotton floral fruits and buds causing severe crop losses. Digestion in the boll weevil is facilitated by high levels of serine proteinases, which are responsible for the almost all proteolytic activity. Aiming to reduce the proteolytic activity, the inhibitory effects of black-eyed pea trypsin/chymotrypsin inhibitor (BTCI), towards trypsin and chymotrypsin from bovine pancreas and from midguts of A. grandis larvae and adult insects were analyzed. BTCI, purified from Vigna unguiculata (L.) seeds, was highly active against different trypsin-like proteinases studied and moderately active against the digestive chymotrypsin of adult insects. Nevertheless, no inhibitory activity was observed against chymotrypsin from A. grandis larval guts. To test the BTCI efficiency in vivo, neonate larvae were reared on artificial diet containing BTCI at 10, 50 and 100 microM. A reduction of larval weight of up to approximately 54% at the highest BTCI concentration was observed. At this concentration, the insect mortality was 65%. This work constitutes the first observation of a Bowman-Birk type inhibitor active in vitro and in vivo toward the cotton boll weevil A. grandis. The results of bioassays strongly suggest that BTCI may have potential as a transgene protein for use in engineered crop plants modified for heightened resistance to the cotton boll weevil.


Peptides | 2007

Jaburetox-2Ec: An insecticidal peptide derived from an isoform of urease from the plant Canavalia ensiformis

F. Mulinari; Fernanda Stanisçuaski; L.R. Bertholdo-Vargas; Melissa Postal; O.B. Oliveira-Neto; Daniel J. Rigden; Maria Fatima Grossi-de-Sa; Célia R. Carlini

Canatoxin, a urease isoform from Canavalia ensiformis seeds, shows insecticidal activity against different insect species. Its toxicity relies on an internal 10 kDa peptide (pepcanatox), released by hydrolysis of Canatoxin by cathepsins in the digestive system of susceptible insects. In the present work, based on the N-terminal sequence of pepcanatox, we have designed primers to amplify by PCR a 270-bp fragment corresponding to pepcanatox using JBURE-II cDNA (one of the urease isoforms cloned from C. ensiformis, with high identity to JBURE-I, the classical urease) as a template. This amplicon named jaburetox-2 was cloned into pET 101 vector to obtain heterologous expression in Escherichia coli of the recombinant protein in C-terminal fusion with V-5 epitope and 6-His tag. Jaburetox-2Ec was purified on Nickel-NTA resin and bioassayed in insect models. Dysdercus peruvianus larvae were fed on cotton seed meal diets containing 0.01% (w/w) Jaburetox-2Ec and, after 11 days, all individuals were dead. Jaburetox-2Ec was also tested against Spodoptera frugiperda larvae and caused 100% mortality. In contrast, high doses of Jaburetox-2Ec were innocuous when injected or ingested by mice and neonate rats. Modeling of Jaburetox-2Ec, in comparison with other peptide structures, revealed a prominent beta-hairpin motif consistent with an insecticidal activity based on either neurotoxicity or cell permeation.


Journal of Protein Chemistry | 2003

Molecular cloning of α-amylases from cotton boll weevil, Anthonomus grandis and structural relations to plant inhibitors: An approach to insect resistance

Osmundo Brilhante Oliveira-Neto; João A. N. Batista; Daniel J. Rigden; Octávio L. Franco; Rosana Falcão; Rodrigo da Rocha Fragoso; Luciane V. Mello; Roseane Cavalcanti dos Santos; Maria Fatima Grossi-de-Sa

Anthonomus grandis, the cotton boll weevil, causes severe cotton crop losses in North and South America. Here we demonstrate the presence of starch in the cotton pollen grains and young ovules that are the main A. grandis food source. We further demonstrate the presence of α-amylase activity, an essential enzyme of carbohydrate metabolism for many crop pests, in A. grandis midgut. Two α-amylase cDNAs from A. grandis larvae were isolated using RT-PCR followed by 5′ and 3′ RACE techniques. These encode proteins with predicted molecular masses of 50.8 and 52.7 kDa, respectively, which share 58% amino acid identity. Expression of both genes is induced upon feeding and concentrated in the midgut of adult insects. Several α-amylase inhibitors from plants were assayed against A. grandis α-amylases but, unexpectedly, only the BIII inhibitor from rye kernels proved highly effective, with inhibitors generally active against other insect amylases lacking effect. Structural modeling of Amylag1 and Amylag2 showed that different factors seem to be responsible for the lack of effect of 0.19 and α-AI1 inhibitors on A. grandis α-amylase activity. This work suggests that genetic engineering of cotton to express α-amylase inhibitors may offer a novel route to A. grandis resistance.


Brazilian Journal of Medical and Biological Research | 2001

Vicilins (7S storage globulins) of cowpea (Vigna unguiculata) seeds bind to chitinous structures of the midgut of Callosobruchus maculatus (Coleoptera: Bruchidae) larvae

Maurício P. Sales; P.P. Pimenta; N.S. Paes; Maria Fatima Grossi-de-Sa; José Xavier-Filho

The presence of chitin in midgut structures of Callosobruchus maculatus larvae was shown by chemical and immunocytochemical methods. Detection by Western blotting of cowpea (Vigna unguiculata) seed vicilins (7S storage proteins) bound to these structures suggested that C. maculatus-susceptible vicilins presented less staining when compared to C. maculatus-resistant vicilins. Storage proteins present in the microvilli in the larval midgut of the bruchid were recognized by immunolabeling of vicilins in the appropriate sections with immunogold conjugates. These labeling sites coincided with the sites labeled by an anti-chitin antibody. These results, taken together with those previously published showing that the lower rates of hydrolysis of variant vicilins from C. maculatus-resistant seeds by the insects midgut proteinases and those showing that vicilins bind to chitin matrices, may explain the detrimental effects of variant vicilins on the development of C. maculatus larvae.

Collaboration


Dive into the Maria Fatima Grossi-de-Sa's collaboration.

Top Co-Authors

Avatar

Octávio L. Franco

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Patrícia B. Pelegrini

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Maria Cristina Mattar da Silva

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Thales L. Rocha

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Octavio L. Franco

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Leonardo Lima Pepino de Macedo

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Osmundo Brilhante Oliveira-Neto

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar

Marcio Alves-Ferreira

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Erika V.S. Albuquerque

Empresa Brasileira de Pesquisa Agropecuária

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge