Maria Fe Andrés
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Fe Andrés.
New Phytologist | 2013
Mary Portillo; Javier Cabrera; Keith Lindsey; Jen Topping; Maria Fe Andrés; Mariana Emiliozzi; Juan Carlos Oliveros; Gloria García-Casado; Roberto Solano; Hinanit Koltai; Nathalie Resnick; Carmen Fenoll; Carolina Escobar
Root-knot nematodes (RKNs) induce giant cells (GCs) from root vascular cells inside the galls. Accompanying molecular changes as a function of infection time and across different species, and their functional impact, are still poorly understood. Thus, the transcriptomes of tomato galls and laser capture microdissected (LCM) GCs over the course of parasitism were compared with those of Arabidopsis, and functional analysis of a repressed gene was performed. Microarray hybridization with RNA from galls and LCM GCs, infection-reproduction tests and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) transcriptional profiles in susceptible and resistant (Mi-1) lines were performed in tomato. Tomato GC-induced genes include some possibly contributing to the epigenetic control of GC identity. GC-repressed genes are conserved between tomato and Arabidopsis, notably those involved in lignin deposition. However, genes related to the regulation of gene expression diverge, suggesting that diverse transcriptional regulators mediate common responses leading to GC formation in different plant species. TPX1, a cell wall peroxidase specifically involved in lignification, was strongly repressed in GCs/galls, but induced in a nearly isogenic Mi-1 resistant line on nematode infection. TPX1 overexpression in susceptible plants hindered nematode reproduction and GC expansion. Time-course and cross-species comparisons of gall and GC transcriptomes provide novel insights pointing to the relevance of gene repression during RKN establishment.
Phytochemistry Reviews | 2012
Maria Fe Andrés; Azucena González-Coloma; J. Sanz; Jesus Burillo; Paula Sainz
Plant parasitic nematodes are the most destructive group of plant pathogens worldwide and their control is extremely challenging. Plant Essential oils (EOs) and their constituents have a great potential in nematode control since they can be developed for use as nematicides themselves or can serve as model compounds for the development of derivatives with enhanced activity. This study reviews the plant EOs evaluated as potential nematicides and their toxic effects against pinewood nematode (Bursaphelenchus xylophilus) and root-knot nematodes (Meloidogyne spp.). Additionally, the nematicidal activity to M. javanica of several EOs from Spanish aromatic plants and their components is described.
European Journal of Plant Pathology | 2009
Laura Cortada; F. Javier Sorribas; C. Ornat; Maria Fe Andrés; Soledad Verdejo-Lucas
The response of four Mi-resistance gene tomato rootstocks to seven populations of Meloidogyne was determined in pot tests conducted in a glasshouse. Rootstocks PG76 (Solanum lycopersicum × Solanum sp.) and Brigeor (S. lycopersicum × S. habrochaites) and resistant cv. Monika (S. lycopersicum) were assessed against one population of M. arenaria, three of M. incognita, and three of M. javanica. Rootstocks Beaufort and Maxifort were assessed against one population of M. arenaria, two of M. incognita and two of M. javanica. Rootstock PG76 was highly resistant (reproduction index <10%) to all the populations, whereas rootstock Brigeor and cv. Monika were highly to moderate resistant. Rootstocks Beaufort and Maxifort showed reduced resistance or inability to suppress nematode reproduction, and their responses varied according to the population tested. Beaufort and Maxifort were susceptible to the two populations of M. javanica as Maxifort was to one of M. incognita. The reproduction index of the nematode was higher (P < 0.05) on Maxifort than Beaufort for all root-knot nematode populations.
Journal of Natural Products | 2016
Luis F. Julio; Alejandro F. Barrero; M. Mar Herrador del Pino; Jesús F. Arteaga; Jesus Burillo; Maria Fe Andrés; Carmen E. Díaz; Azucena González-Coloma
Several preparations were obtained from the aerial parts of predomesticated Lavandula luisieri, including the essential oil and ethanolic, hexane, and ethyl acetate extractives. Additionally, pilot plant vapor pressure extraction was carried out at a pressure range of 0.5-1.0 bar to give a vapor pressure oil and an aqueous residue. A chemical study of the hexane extract led to the isolation of six necrodane derivatives (1, 2, and 4-7), with four of these (1, 2, 5, and 7) being new, as well as camphor, a cadinane sesquiterpene (9), tormentic acid, and ursolic acid. The EtOAc and EtOH extracts contained a mixture of phenolic compounds with rosmarinic acid being the major component. Workup of the aqueous residue resulted in the isolation of the necrodane 3 and (1R*,2S*,4R*)-p-menth-5-ene-1,2,8-triol (8), both new natural compounds. The structures of the new compounds were established based on their spectroscopic data. The phytotoxic and nematicidal activities of these compounds were evaluated.
Chemistry & Biodiversity | 2018
Gonzalo Ortiz de Elguea-Culebras; Raúl Sánchez-Vioque; M.I. Berruga; David Herraiz-Peñalver; Azucena González-Coloma; Maria Fe Andrés; Omar Santana-Méridas
This work presents the biocidal (insecticidal, ixodicidal, nematicidal, and phytotoxic) effects and chemical compositions of three essential oils obtained from the industrial steam distillation (IEOs) of hyssop (Hyssopus officinalis L.), lavandin (Lavandula × intermedia or L. × hybrida var. Super), and cotton lavender (Santolina chamaecyparissus L.). Their chemical composition analyzed by gas chromatography coupled to mass spectrometry showed 1,8‐cineole (53%) and β‐pinene (16%) as the major components of H. officinalis, linalyl acetate (38%) and linalool (29%) of L. × intermedia; and 1,8‐cineole (10%) and 8‐methylene‐3‐oxatricyclo[5.2.0.02,4]nonane (8%) in S. chamaecyparissus. The biocidal tests showed that L. × intermedia IEO was the most active against the insect Spodoptera littoralis and toxic to the tick Hyalomma lusitanicum, IEO of H. officinalis was strongly active against S. littoralis, and finally, S. chamaecyparissus IEO was a strong antifeedant against the aphid Rhopalosiphum padi, toxic to H. lusitanicum and with moderate effects against Leptinotarsa decemlineata, S. littoralis, and Lolium perenne.
Environmental Science and Pollution Research | 2018
Maria Fe Andrés; Azucena González-Coloma; Rubén Muñoz; Felipe De la Peña; Luis F. Julio; Jesus Burillo
The nematicidal activity of hydrolate by-products from the semi industrial vapor-pressure essential oil extraction of selected aromatic plant species (commercial: Lavandula × intermedia Emeric ex Loisel. var. super, Thymus vulgaris L., T. zygis Loefl ex L. and experimentally pre-domesticated: L. luisieri (Rozeira) Rivas-Martínez) was investigated against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. Liquid-liquid extraction of hydrolates yielded the corresponding aqueous and organic fractions which were biological and chemically studied. Hydrolates from L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis showed strong in vitro nematicidal effects against M. javanica (J2 mortality and suppression of egg hatching). In the case of the Thymus species, the active components were found in the organic fraction, characterized by thymol as major component. Conversely, the nematicidal activity of L. × intermedia var. super and L. luisieri remained in the corresponding aqueous fractions. In vivo tests on tomato seedlings at sublethal doses of the hydrolates/organic fractions induced a significant reduction of nematode infectivity. In pot experiments, all hydrolates tested on tomato plants significantly affect the infection frequency and reproduction rate of the nematode population. This study demonstrates that L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis hydrolates could be an exploitable source of potential waste protection products on root-knot nematodes.
Phytochemistry Reviews | 2017
Maria Fe Andrés; Carmen E. Díaz; Cristina Giménez; Raimundo Cabrera; Azucena González-Coloma
Endophytes fungi have been widely bioprospected to find new drugs and drug leads including antimicrobial agents and antifungals. However, an important role in host plant protection has been suggested for their presence and their metabolites. Therefore, nematicidal and insecticidal effects of their metabolites should be expected. In this review, the literature data available on insecicidal and nematicidal compounds identified from fungal endophytes are presented. Additionally we present a recent study on the endophytic biodiversity of a unique paleoflora, the Macaronesian laurel forest, in the light of their role in plant protection.
Crop Protection | 2012
Soledad Verdejo-Lucas; M. Talavera; Maria Fe Andrés
Crop Protection | 2017
Luis F. Julio; Azucena González-Coloma; Jesus Burillo; Carmen E. Díaz; Maria Fe Andrés
Crop Protection | 2016
Oscar Grillo; Maria Fe Andrés; Santiago Moreno-Vázquez