Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María Fernanda Ruiz is active.

Publication


Featured researches published by María Fernanda Ruiz.


PLOS ONE | 2007

The Gene Transformer of Anastrepha Fruit Flies (Diptera, Tephritidae) and Its Evolution in Insects

María Fernanda Ruiz; Andreina Milano; Marco Salvemini; José M. Eirín-López; André L.P. Perondini; Denise Selivon; Catello Polito; Giuseppe Saccone; Lucas Sánchez

In the tephritids Ceratitis capitata and Bactrocera oleae, the gene transformer acts as the memory device for sex determination, via an auto-regulatory function; and functional Tra protein is produced only in females. This paper investigates the evolution of the gene tra, which was characterised in twelve tephritid species belonging to the less extensively analysed genus Anastrepha. Our study provided the following major conclusions. Firstly, the memory device mechanism used by this gene in sex determination in tephritids likely existed in the common ancestor of the Ceratitis, Bactrocera and Anastrepha phylogenetic lineages. This mechanism would represent the ancestral state with respect to the extant cascade seen in the more evolved Drosophila lineage. Secondly, Transformer2-specific binding intronic splicing silencer sites were found in the splicing regulatory region of transformer but not in doublesex pre-mRNAs in these tephritids. Thus, these sites probably provide the discriminating feature for the putative dual splicing activity of the Tra-Tra2 complex in tephritids. It acts as a splicing activator in dsx pre-mRNA splicing (its binding to the female-specific exon promotes the inclusion of this exon into the mature mRNA), and as a splicing inhibitor in tra pre-mRNA splicing (its binding to the male-specific exons prevents the inclusion of these exons into the mature mRNA). Further, a highly conserved region was found in the specific amino-terminal region of the tephritid Tra protein that might be involved in Tra auto-regulatory function and hence in its repressive splicing behaviour. Finally, the Tra proteins conserved the SR dipeptides, which are essential for Tra functionality.


Development Genes and Evolution | 2007

The gene doublesex of Anastrepha fruit flies (Diptera, Tephritidae) and its evolution in insects

María Fernanda Ruiz; José M. Eirín-López; Rominy N. Stefani; André L.P. Perondini; Denise Selivon; Lucas Sánchez

The doublesex (dsx) gene of several Anastrepha species was isolated and characterised. Its molecular organisation was found to be the same in all the species examined. This gene is composed of four exons: Exons 1 and 2 are common to both sexes, exon 3 is female specific, and exon 4 is male specific. It codes for both the female DsxF and male DsxM proteins, corresponding to the sex-specific splicing product of its primary transcript; male-specific splicing is the default mode. A comparison of the Dsx proteins of different Anastrepha species with those of other insects showed them to be very similar. Molecular evolutionary analysis (both at the nucleotide and amino acid levels) of dsx in different insects revealed a topology in good agreement with their owners’ taxonomic relationships. The great majority of the nucleotide changes detected in the dsx gene of the analysed species were significantly synonymous, evidence that strong purifying selection has acted on dsx so that the functional structure of the Dsx proteins is preserved. However, the common region of DsxF and DsxM proteins appeared to be the main target for selection acting upon the long-term evolution of gene dsx.


Cytogenetic and Genome Research | 2006

Cytological characterization of sex chromosomes and ribosomal DNA location in Anastrepha species (Diptera, Tephritidae).

Clara Goday; Denise Selivon; André L.P. Perondini; P.G. Greciano; María Fernanda Ruiz

This paper reports a comparative analysis of heterochromatin organization in the sex chromosomes of the fruit fly Anastrepha. Mitotic chromosomes of eight Anastrepha species from different taxonomic groups were stained with DAPI and chromomycin A3 fluorochromes followed by C-banding. A specific sex-chromosome banding pattern was obtained for each of the analyzed species. Fluorescence in situ hybridization (FISH) was performed to investigate the chromosomal location of rDNA loci. In all cases the rDNA sequences were found to localize exclusively to the sex chromosomes. The results further extend the chromosomal knowledge of Anastrepha and allow a precise species identification.


Gene Expression Patterns | 2003

Molecular analysis and developmental expression of the Sex-lethal gene of Sciara ocellaris (Diptera order, Nematocera suborder)

María Fernanda Ruiz; Clara Goday; P González; Lucas Sánchez

This paper reports the cloning and characterization in Sciara ocellaris of the gene homologous to Sex-lethal (Sxl) of Drosophila melanogaster. This gene plays the key role controlling sex determination and dosage compensation in the latter species. The Sciara Sxl gene produces a single transcript encoding a single protein in both males and females. This protein, found inside the nucleus, is expressed in all tissues. Both Sciara and Drosophila Sxl proteins are highly conserved at their two RNA-binding domains. In both Sciara sexes, the Sxl protein co-localizes with transcription-active regions dependent on RNA polymerase II but not on RNA polymerase I. It would appear that in Sciara, Sxl does not appear to play the key discriminative role in controlling sex determination and dosage compensation that it plays in Drosophila.


BMC Developmental Biology | 2011

The gene transformer-2 of Sciara (Diptera, Nematocera) and its effect on Drosophila sexual development

Iker Martín; María Fernanda Ruiz; Lucas Sánchez

BackgroundThe gene transformer-2, which is involved in sex determination, has been studied in Drosophila, Musca, Ceratitis, Anastrepha and Lucilia. All these members of Diptera belong to the suborder Brachycera. In this work, it is reported the isolation and characterisation of genes transformer-2 of the dipterans Sciara ocellaris and Bradysia coprophila (formerly Sciara coprophila), which belong to the much less extensively analysed Sciaridae Family of the Suborder Nematocera, which is paraphyletic with respect to Suborder Brachycera.ResultsThe transformer-2 genes of the studied Sciara species were found to be transcribed in both sexes during development and adult life, in both the soma and germ lines. They produced a single primary transcript, which follows the same alternative splicing in both sexes, giving rise to different mRNAs isoforms. In S. ocellaris the most abundant mRNA isoform encoded a full-length protein of 251 amino acids, while that of B. coprophila encoded a protein of 246 amino acids. Both showed the features of the SR protein family. The less significant mRNA isoforms of both species encoded truncated, presumably non-functional Transformer-2 proteins. The comparison of the functional Sciara Transformer-2 proteins among themselves and those of other insects revealed the greatest degree of conservation in the RRM domain and linker region. In contrast, the RS1 and RS2 domains showed extensive variation with respect to their number of amino acids and their arginine-serine (RS) dipeptide content. The expression of S. ocellaris Transformer-2 protein in Drosophila XX pseudomales lacking the endogenous transformer-2 function caused their partial feminisation.ConclusionsThe transformer-2 genes of both Sciaridae species encode a single protein in both sexes that shares the characteristics of the Transformer-2 proteins of other insects. These proteins showed conserved sex-determination function in Drosophila; i.e., they were able to form a complex with the endogenous Drosophila Transformer protein that controls the female-specific splicing of the Drosophila doublesex pre-mRNA. However, it appears that the complex formed between the Drosophila Transformer protein and the Sciara Transformer-2 protein is less effective at inducing the female-specific splicing of the endogenous Drosophila doublesex pre-mRNA than the DrosophilaTransformer-Transformer2 complex. This suggests the existence of species-specific co-evolution of the Transformer and Transformer-2 proteins.


PLOS ONE | 2009

Effect of the Gene doublesex of Anastrepha on the Somatic Sexual Development of Drosophila

Mercedes Álvarez; María Fernanda Ruiz; Lucas Sánchez

Background The gene doublesex (dsx) is at the bottom of the sex determination genetic cascade and is transcribed in both sexes, but gives rise to two different proteins, DsxF and DsxM, which impose female and male sexual development respectively via the sex-specific regulation of the so-called sexual cyto-differentiation genes. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha DsxF and DsxM proteins to direct the sexual development in Drosophila (Drosophilidae). Methodology To express these proteins in Drosophila, the GAL4-UAS system was used. The effect of these proteins was monitored in the sexually dimorphic regions of the fly: the foreleg basitarsus, the 5th, 6th and 7th tergites, and the external terminalia. In addition, we analysed the effect of Anastrepha DsxF and DsxM proteins on the regulation of Drosophila yolk protein genes, which are expressed in the fat body of adult females under the control of dsx. Conclusions The Anastrepha DsxF and DsxM proteins transformed doublesex intersexual Drosophila flies into females and males respectively, though this transformation was incomplete and the extent of their influence varied in the different sexually dimorphic regions of the adult fly. The Anastrepha DsxF and DsxM proteins also behaved as activators and repressors, respectively, of the Drosophila yolk protein genes, as do the DsxF and DsxM proteins of Drosophila itself. Finally, the Anastrepha DsxF and DsxM proteins were found to counteract the functions of Drosophila DsxM and DsxF respectively, reflecting the normal behaviour of the latter proteins towards one another. Collectively, these results indicate that the Anastrepha DsxF and DsxM proteins show conserved female and male sex-determination function respectively in Drosophila, though it appears that they cannot fully substitute the latters own Dsx proteins. This incomplete function might be partly due to a reduced capacity of the Anastrepha Dsx proteins to completely control the Drosophila sexual cyto-differentiation genes, a consequence of the accumulation of divergence between these species resulting in the formation of different co-adapted complexes between the Dsx proteins and their target genes.


Chromosome Research | 2007

Chromatin structure of ribosomal genes in Chironomus thummi (Diptera: Chironomidae): tissue specificity and behaviour under drug treatment

Cristina Sanz; Eduardo Gorab; María Fernanda Ruiz; José Manuel Sogo; José Luís Díez

In eukaryotes the ribosomal gene population shows two different states in terms of chromatin structure. One subset is organized as nucleosomes (silent copies) while the other has a non-nucleosomal configuration (active copies). Insect cells are not the exception and this bimodal distribution of ribosomal chromatin also occurs in salivary gland cells, and cells of other larval tissues, of the midge Chironomus thummi. In run-on experiments on salivary glands cells we confirmed that transcribed rRNA genes show a non-nucleosomal configuration. The proportion of rRNA genes adopting an open, non-nucleosomal configuration was found to be tissue-dependent, suggesting that the population of unfolded ribosomal chromatin in C. thummi was established during cell differentiation. We propose that cell differentiation determines the fraction of non-nucleosomal rRNA gene copies and thus defines the range of possible rRNA synthesis rates in a particular cell type. In the salivary gland the fraction of unfolded chromatin was not significantly affected when transcription was repressed. However, transcription activation by pilocarpine led to a moderate increase in this fraction. These findings indicate that, in addition to a possible increase in the number of RNA-polymerases per transcribing rDNA unit, the proportion of transcribed ribosomal genes in differentiated cells can be modulated in response to an exceptional rRNA synthesis requirement.


The International Journal of Developmental Biology | 2010

Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila

María Fernanda Ruiz; Lucas Sánchez

The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.


Genetics | 2015

An Unusual Role for doublesex in Sex Determination in the Dipteran Sciara

María Fernanda Ruiz; Mercedes Álvarez; José M. Eirín-López; Francesca Sarno; Leonor Kremer; José Luis Barbero; Lucas Sánchez

The gene doublesex, which is placed at the bottom of the sex-determination gene cascade, plays the ultimate discriminatory role for sex determination in insects. In all insects where this gene has been characterized, the dsx premessenger RNA (pre-mRNA) follows a sex-specific splicing pattern, producing male- and female-specific mRNAs encoding the male-DSXM and female-DSXF proteins, which determine male and female development, respectively. This article reports the isolation and characterization of the gene doublesex of dipteran Sciara insects. The Sciara doublesex gene is constitutively transcribed during development and adult life of males and females. Sciara had no sex-specific doublesex mRNAs but the same transcripts, produced by alternative splicing of its primary transcript, were present in both sexes, although their relative abundance is sex specific. However, only the female DSXF protein, but not the male DSXM protein, was produced at similar amounts in both sexes. An analysis of the expression of female and male Sciara DSX proteins in Drosophila showed that these proteins conserved female and male function, respectively, on the control of Drosophila yolk-protein genes. The molecular evolution of gene doublesex of all insects where this gene has been characterized revealed that Sciara doublesex displays a considerable degree of divergence in its molecular organization and its splicing pattern with respect to the rest of dipterans as suggested by its basal position within the doublesex phylogeny. It is suggested that the doublesex gene is involved in Sciara sex determination although it appears not to play the discriminatory role performed in other insects.


PLOS ONE | 2013

Biochemical and Functional Analysis of Drosophila-Sciara Chimeric Sex-Lethal Proteins

María Fernanda Ruiz; Francesca Sarno; Silvia Zorrilla; Germán Rivas; Lucas Sánchez

Background The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. Methodology Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. Conclusions The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate folding of SXL to carry out its sex-specific functions.

Collaboration


Dive into the María Fernanda Ruiz's collaboration.

Top Co-Authors

Avatar

Lucas Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Clara Goday

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Denise Selivon

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Francesca Sarno

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonor Kremer

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mercedes Álvarez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

C. Donoro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Cristina Sanz

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge