Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Filek is active.

Publication


Featured researches published by Maria Filek.


Acta Physiologiae Plantarum | 2007

The role of oxidative stress induced by growth regulators in the regeneration process of wheat

M. Szechyńska-Hebda; Edyta Skrzypek; G. Dąbrowska; Jolanta Biesaga-Kościelniak; Maria Filek; Maria Wędzony

As part of work to optimize the regeneration processes of winter wheat callus culture the effects of two auxins (2,4-D, IAA), two cytokinins (kinetin, zeatin), and the fungal mycotoxin zearalenone, were tested individually in vitro using embryo-, and inflorescence-derived callus. To determine the role of oxidative stress in cell regeneration, changes in the basic antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and peroxidases (PODs) were investigated. In general, zearalenone (ZEN) was found to be more effective than cytokinin treatments for inducing shoot production, whereas auxins suppressed the regeneration process. Regenerating callus showed higher induction of these antioxidant enzymes in comparison with non-regenerating callus. SOD, CAT and POD activities were higher in callus derived from inflorescence than in callus derived from immature embryo. Activities of SOD, CAT and POD in culture derived from immature embryos were depending on type of growth regulator in medium. The highest enzyme activities were observed in non-regenerating tissues after auxins treatment and in regenerating tissues after cytokinins treatment. The effect of ZEN was similar to that of cytokinins. One MnSOD band and two Cu/ZnSOD bands were detected in all cultures. Changes in SOD izoform patterns occurred in callus culture on media with auxins and ZEN, but not on media with cytokinins. Our results suggest that callus regeneration is associated with reactive oxygen species production induced by specific growth regulators. Reactive oxygen species under the control of cellular antioxidant machinery can mediate signalling pathways between exogenously applied growth regulators and the induction and/or creation of the direction of morphogenesis.


Journal of Plant Physiology | 2003

Variation and action potentials evoked by thermal stimuli accompany enhancement of ethylene emission in distant non-stimulated leaves ofVicia faba minorseedlings

Halina Dziubinska; Maria Filek; Janusz Koscielniak; Kazimierz Trebacz

Electrical activity (action and variation potentials) and ethylene emission were measured in thermally stimulated Vicia faba minor seedlings. It was determined that variation potential with or without super-imposed action potentials was generated and propagated basipetally in response to scorching of the upper leaf. In stimulated plants the level of ethylene production measured in lower, non stimulated leaf was significantly higher than that in the control plants and the difference correlated with the amplitude of the electrical response. Neither variation nor action potential was recorded when ethylene was injected to the chamber covering the experimental leaf. The level of ethylene emission showed clear circadian rhythm when measured at photoperiod 16:8 (LD) or at constant light (LL). It is concluded that the sequence of ion fluxes registered as an electrical response of a plant to the thermal stimulus is a signal evoking an enhancement of ethylene emission.


Journal of Plant Physiology | 2010

Effect of selenium on characteristics of rape chloroplasts modified by cadmium.

Maria Filek; Barbara Gzyl-Malcher; Maria Zembala; Elżbieta Bednarska; Peter Laggner; Manfred Kriechbaum

Selenium appears to be an important protective agent that decreases cadmium-induced toxic effects in animals and plants. The aim of these studies was to investigate the changes of properties of chloroplast membranes obtained from Cd-treated rape seedlings caused by Se additions. Chloroplasts were isolated from leaves of 3-week-old rape plants cultured on Murashige-Skoog media supplied with 2 microM Na(2)SeO(4) and/or 400 microM CdCl(2) under in vitro conditions. The following physicochemical characteristics of chloroplasts were chosen as indicators of Se-effects: average size, zeta potential, ultrastructure, lipid and fatty acid composition and fluidity of envelope membrane. The results suggest that Se can partly counterbalance the destructive effects of Cd. This protective action led to an increase of chloroplast size reduced by Cd treatment and rebuilt, to some extent, the chloroplast ultrastructure. Lipid and fatty acid composition of chloroplast envelopes modified by Cd showed a decrease in digalactosyl-diacylglycerol content and an increase of content of monogalactosyl-diacylglycerol and phospholipid fractions, as well as an increase of fatty acid saturation of all lipids studied. The change in fatty acid saturation correlated well with a decrease of membrane fluidity and with a diminishing of absolute values of zeta potential. The presence of selenium in cultured media caused a partial reversal of the detected changes, which was especially visible in properties related to the hydrophobic part of an envelope, i.e. fatty acid saturation and fluidity.


Journal of Plant Physiology | 2012

The effects of short-term selenium stress on Polish and Finnish wheat seedlings—EPR, enzymatic and fluorescence studies

Maria Łabanowska; Maria Filek; Janusz Kościelniak; Magdalena Kurdziel; Ewa Kuliś; Helinä Hartikainen

Biochemical analyses of antioxidant content were compared with measurements of fluorescence and electron paramagnetic resonance (EPR) to examine the alteration of radicals in wheat seedlings exposed to 2 days of selenium stress. Two genotypes of Polish and one of Finnish wheat, differing in their tolerance to long-term stress treatment, were cultured under hydroponic conditions to achieve the phase of 3-leave seedlings. Afterwards, selenium (sodium selenate, 100 μM concentration) was added to the media. After Se-treatment, all varieties showed an increase in carbohydrates (soluble and starch), ascorbate and glutathione content in comparison to non-stressed plants. These changes were more visible in Finnish wheat. On the basis of lipid peroxidation measurements, Finnish wheat was recognized as the genotype more sensitive to short-term Se-stress than the Polish varieties. The antioxidant enzyme activities (superoxide dismutase, ascorbate peroxidase and glutathione reductase) increased in Polish genotypes, whereas they decreased in Finnish wheat plants cultured on Se media. The action of reactive oxygen species in short-term action of Se stress was confirmed by the reduction of PSII and PSI system activities (measured by fluorescence parameters and EPR, respectively). EPR studies showed changes in redox status (especially connected with Mn(II)/Mn(III), and semiquinone/quinone ratios) in wheat cell after Se treatment. The involvement of the carbohydrate molecules as electron traps in production of long-lived radicals is postulated.


International Journal of Molecular Sciences | 2013

Alleviation of Osmotic Stress Effects by Exogenous Application of Salicylic or Abscisic Acid on Wheat Seedlings

Izabela Marcińska; Ilona Czyczyło-Mysza; Edyta Skrzypek; Maciej T. Grzesiak; Franciszek Janowiak; Maria Filek; Michał Dziurka; Kinga Dziurka; Piotr Waligórski; Katarzyna Juzoń; Katarzyna Cyganek; S. Grzesiak

The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity.


Plant Physiology and Biochemistry | 2016

Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis

Anna Janeczko; Damian Gruszka; Ewa Pociecha; Michał Dziurka; Maria Filek; Barbara Jurczyk; Hazem M. Kalaji; Maciej Kocurek; Piotr Waligórski

Brassinosteroids (BR) are plant steroid hormones that were discovered more than thirty years ago, but their physiological function has yet to be fully explained. The aim of the study was to answer the question of whether/how disturbances in the production of BR in barley affects the plants metabolism and development under conditions of optimal watering and drought. Mutants with an impaired production of BR are one of the best tools in research aimed at understanding the mechanisms of action of these hormones. The study used barley cultivars with a normal BR synthesis (wild type) and semi-dwarf allelic mutants with an impaired activity of C6-oxidase (mutation in HvDWARF), which resulted in a decreased BR synthesis. Half of the plants were subjected to drought stress in the seedling stage and the other half were watered optimally. Plants with impaired BR production were characterised by a lower height and developmental retardation. Under both optimal watering and drought, BR synthesis disorders caused the reduced production of ABA and cytokinins, but not auxins. The BR mutants also produced less osmoprotectant (proline). The optimally watered and drought-stressed mutants accumulated less sucrose, which was accompanied by changes in the production of other soluble sugars. The increased content of fructooligosaccharide (kestose) in optimally watered mutants would suggest that BR is a negative regulator of kestose production. The decreased level of nystose in the drought-stressed mutants also suggests BR involvement in the regulation of the production of this fructooligosaccharide. The accumulation of the transcripts of genes associated with stress response (hsp90) was lower in the watered and drought-stressed BR-deficient mutants. In turn, the lower efficiency of photosystem II and the net photosynthetic rate in mutants was revealed only under drought conditions. The presented research allows for the physiological and biochemical traits of two BR-barley mutants to be characterised, which helps BR function to be understood. The knowledge can also be a good starting point for some breeding companies that are interested in introducing new semi-dwarf barley cultivars.


Langmuir | 2011

Mixed DPPC/DPTAP Monolayers at the Air/Water Interface: Influence of Indolilo-3-acetic Acid and Selenate Ions on the Mono layer Morphology

Barbara Gzyl-Malcher; Maria Filek; Gerald Brezesinski

The interactions of mixed monolayers of two lipids, zwitterionic 1,2-dipalmitoyl-phosphatidylcholine (DPPC) and positively charged 1,2-dipalmitoyl-3-trimethylammonium-propane (DPTAP), with phytohormone indolilo-3-acetic acid (IAA) and selenate anions in the aqueous subphase were studied. For this purpose, isotherms of the surface pressure versus the mean molecular area were recorded. Domain formation was investigated by using Brewster angle microscopy (BAM). The method of grazing incidence X-ray diffraction (GIXD) was also applied for the characterization of the organization of lipid molecules in condensed monolayers. It was found that selenate ions contribute to monolayer condensation by neutralizing the positive net charge of mixed monolayers whereas IAA molecules penetrated the lipid monolayer, causing its expansion/fluidization. When both solutes were introduced into the subphase, a competition between them for interaction with the positively charged lipids in the monolayer was observed.


Journal of Plant Physiology | 2013

EPR spectroscopy as a tool for investigation of differences in radical status in wheat plants of various tolerances to osmotic stress induced by NaCl and PEG-treatment.

Maria Łabanowska; Maria Filek; Magdalena Kurdziel; Ewa Bidzińska; Zbigniew Miszalski; Helinä Hartikainen

Two kinds of wheat genotypes with different tolerance to osmotic stress (NaCl and PEG-treatment) were investigated with biochemical analyses, including the measurements of total antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity, reducing power and starch content. The results were compared with electron paramagnetic resonance (EPR) data concerning the nature and amounts of stable long lived radicals present in the control and stressed plants. In addition, the changes in manganese content upon stress conditions were monitored. Different mechanisms of protection against PEG stress in sensitive and tolerant wheat genotypes were postulated. In sensitive genotypes, electrons were created in excess in stress conditions, and were stabilized by polysaccharide molecules, whereas in tolerant genotypes, protection by antioxidants dominated. Moreover, the quinone-semiquinone balance shifted towards semiquinone, which became the place of electron trapping. NaCl-treatment yielded significant effects mainly in sensitive genotypes and was connected with the changes of water structure, leading to inactivation of reactive oxygen species by water molecules.


Plant Science | 2012

Cytokinins in shoot apices of Brassica napus plants during vernalization

Danuše Tarkowská; Maria Filek; Jolanta Biesaga-Kościelniak; Izabela Marcińska; Ivana Macháčková; Jan Krekule; Miroslav Strnad

The putative role of cytokinins in processes leading to reproductive development of plants was investigated by analysing the shoot apical parts of a winter cultivar of oilseed rape (Brassica napus L. var. oleifera, cv. Górczański). The endogenous cytokinin levels were measured by liquid chromatography-tandem mass spectrometry (LC-MS) in the shoot apices of vegetative plants (grown at 20/17°C with a 16/8h day/night regime) and vernalized plants (56 days at 5/2°C with a 16/8h photoperiod) at different times during floral transition. During vernalization, the content of all isoprenoid cytokinins increased significantly, coinciding well with the onset of the early stages of reproductive development. Cytokinin levels reached their maxima when most of the plants became irreversibly reproductive (after 42 days of cold treatment). cis-Zeatin riboside (unequivocally identified by quadrupole-time-of-flight MS) accounted for ca. 87-89% of the total isoprenoid cytokinin content in control and vernalized plants, whilst N(6)-isopentenyladenosine ( approximately 6% in control and approximately 8% in vernalized plants) and cis-zeatin (approxiamtely 2% in control and approximately 1% in vernalized plants) were the next most abundant cytokinins. In the post-vernalization period, endogenous cytokinin levels decreased, but remained significantly higher in the reproductive plants than in the vegetative controls. These results suggest that cytokinins, especially those of the cis-zeatin type, are involved in vernalization-induced reproductive development of B. napus.


Zeitschrift für Naturforschung C | 2002

The influence of phytohormones on zeta potential and electrokinetic charges of winter wheat cells.

Maria Filek; Maria Zembala; Magdalena Szechyńska-Hebda

The zeta potential measurements of protoplasts obtained from winter wheat cell culture and phospholipid liposomes were performed to determine the electrokinetic charge in a medium containing various phytohormones (kinetin, 2,4-D and zearalenone) in absence and in presence of 2·10-5ᴍCa2+. Calli were induced from immature inflorescences (inf) and embryos (emb) and cultured to obtain non-embryogenic (NE) and embryogenic (E) cell tissues. All investigated phytohormones indicate ability to adsorb to the negatively charged surfaces (latex, L88 - model negative adsorption site) both in water solutions and at the presence of mannitol and buffer (MES). In biological systems (protoplasts and liposomes - prepared from phospholipids of protoplasts) the electrokinetic charges were dependent on the phospholipid and protein composition of cells. The influence of protein groups on electrokinetic charge was calculated from charge values of protoplasts and liposomes, assuming additivity of surface charges. The comparison of calculated charges for protoplasts and liposomes indicate that 2,4-D is better adsorbed to the phospholipid and proteins of NE cells whereas kinetin is bound to the phospholipid and protein sites of E calli. This effect may be connected with embryogenesis process, where non-embryogenic culture of wheat requires 2,4-D in the medium, and embryogenic culture requires cytokinin rather. Zearalenone binding is especially dependent on the kind of explant.

Collaboration


Dive into the Maria Filek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michał Dziurka

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Anna Janeczko

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

F. Dubert

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge