Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Filippova is active.

Publication


Featured researches published by Maria Filippova.


Gene | 2000

A novel type of RNase III family proteins in eukaryotes.

Valery Filippov; Victor V. Solovyev; Maria Filippova; Sarjeet S. Gill

The RNase III family of double-stranded RNA-specific endonucleases is characterized by the presence of a highly conserved 9 amino acid stretch in their catalytic center known as the RNase III signature motif. We isolated the drosha gene, a new member of this family in Drosophila melanogaster. Characterization of this gene revealed the presence of two RNase III signature motifs in its sequence that may indicate that it is capable of forming an active catalytic center as a monomer. The drosha protein also contains an 825 amino acid N-terminus with an unknown function. A search for the known homologues of the drosha protein revealed that it has a similarity to two adjacent annotated genes identified during C. elegans genome sequencing. Analysis of the genomic region of these genes by the Fgenesh program and sequencing of the EST cDNA clone derived from it revealed that this region encodes only one gene. This newly identified gene in nematode genome shares a high similarity to Drosophila drosha throughout its entire protein sequence. A potential drosha homologue is also found among the deposited human cDNA sequences. A comparison of these drosha proteins to other members of the RNase III family indicates that they form a new group of proteins within this family.


Cell Death & Differentiation | 2006

Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis

To Garnett; Maria Filippova; Penelope J. Duerksen-Hughes

Viruses have developed sophisticated strategies to evade host defenses and facilitate the production and spread of progeny. In this study, we show that transfection of the human papillomavirus (HPV) 16 E6 oncogene into HCT116 cells provides protection from tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apoptosis. Additionally, we demonstrate that the protection provided by E6 is dose-dependent because higher levels of E6 provide greater protection. The mechanism underlying this protection involves a rapid reduction in the protein levels of both Fas-associated death domain (FADD) and procaspase 8, which results in suppression of the activation of caspases 8, 3 and 2. Interestingly, E6 does not interfere with the mitochondrial apoptotic pathway even though HCT116 cells have been classified as type II cells with regard to TRAIL signaling. These findings demonstrate that E6 has a more generalized effect on signaling by death ligands than was previously thought and support the notion that E6 can utilize p53-independent mechanisms to modulate cell survival.


Journal of Virology | 2007

The Large and Small Isoforms of Human Papillomavirus Type 16 E6 Bind to and Differentially Affect Procaspase 8 Stability and Activity

Maria Filippova; Melyssa M. Johnson; Marnelli Bautista; Valery Filippov; Nadja Fodor; Sandy S. Tungteakkhun; Kadia Williams; Penelope J. Duerksen-Hughes

ABSTRACT Human papillomavirus type 16 (HPV-16) has developed numerous ways to modulate host-initiated immune mechanisms. The HPV-16 E6 oncoprotein, for example, can modulate the cellular level, and consequently the activity, of procaspase 8, thus modifying the cellular response to cytokines of the tumor necrosis factor family. E6 from HPV-16, but not E6 from the low-risk types 6b and 11, alters the cellular level of procaspase 8 in a dose-dependent manner. Both the large and small (E6*) isoforms of E6, which originate by way of alternate splicing, can modulate procaspase 8 stability. Intriguingly, although both isoforms bind to procaspase 8, the large isoform accelerates the degradation of procaspase 8 while the small isoform stabilizes it. Binding leads to a change in the ability of procaspase 8 to bind either to itself or to FADD (Fas-associated death domain), with the large version of E6 able to inhibit this binding while the small isoform does not. Consistent with this model, knockdown of the large version of E6 by small interfering RNA leads to increases in the levels of procaspase 8 and its binding to both itself and FADD. Thus, these alternatively spliced isoforms can modulate both the level and the activity of procaspase 8 in opposite directions.


Journal of Virology | 2014

Human Papillomavirus Type 16 E6* Induces Oxidative Stress and DNA Damage

Vonetta M. Williams; Maria Filippova; Valery Filippov; Kimberly J. Payne; Penelope J. Duerksen-Hughes

ABSTRACT High-risk types of human papillomavirus (HPV) are the causative agents of virtually all cases of cervical cancer and a significant proportion of other anogenital cancers, as well as both oral and pharyngeal cancers. The high-risk types encode two viral oncogenes, E6 and E7, which work together to initiate cell transformation. Multiple steps involving the activities and interactions of both viral and cellular proteins are involved in the progression from HPV infection to cell transformation to cancer. The E6 oncoprotein is expressed as several isoforms: a full-length variant referred to as E6 and a few shorter isoforms collectively referred to as E6*. In this study, we found that expression of E6* increased the level of reactive oxygen species (ROS) in both HPV-positive and HPV-negative cells. This increased oxidative stress led to higher levels of DNA damage, as assessed by the comet assay, quantification of 8-oxoguanine, and poly(ADP-ribose) polymerase 1. The observed increase in ROS may be due to a decrease in cellular antioxidant activity, as we found that E6* expression also led to decreased expression of superoxide dismutase isoform 2 and glutathione peroxidase. These studies indicate that E6* may play an important role in virus-induced mutagenesis by increasing oxidative stress and DNA damage. IMPORTANCE Our findings demonstrate for the first time that an HPV gene product, E6*, can increase ROS levels in host cells. This ability may play a significant role both in the viral life cycle and in cancer development, because an increase in oxidative DNA damage may both facilitate HPV genome amplification and increase the probability of HPV16 DNA integration. Integration, in turn, is thought to be an important step in HPV-mediated carcinogenesis.


Cancer Research | 2007

The Early Response to DNA Damage Can Lead to Activation of Alternative Splicing Activity Resulting in CD44 Splice Pattern Changes

Valery Filippov; Maria Filippova; Penelope J. Duerksen-Hughes

Expression of the human papillomavirus 16 E6 oncogene interferes with several vital cellular processes, including the p53-dependent response to DNA damage. To assess the influence of E6 on the early response to DNA damage, we analyzed gene expression following mitomycin C-induced genotoxic stress in human E6-expressing U2OS cells (U2OSE64b) as well as in p53-expressing control cells (U2OSE6AS) by comparative global expression profiling. As expected, genes involved in p53-dependent pathways were activated in p53-expressing cells. In the U2OSE64b cells, however, a largely nonoverlapping group of genes was identified, including two splicing factors of the SR family. Immunoblot analysis revealed increased expression of several SR proteins during the early response to DNA damage, which was accompanied by activation of alternative splicing activity. Disruption of splicing activity by treatment with small interfering RNA directed against splicing factor SRp55 resulted in the increased viability of p53-deficient cells following DNA damage. To determine whether the transient activation of splicing activity was due to E6-mediated degradation of p53, or was due to some other activity of E6, we compared the early response of the p53 wild-type and p53-/- isogenic HCT116 cell lines, and found that the increase in splicing activity was observed only in the absence of p53. Finally, both the U2OSE64b and the p53-/- cells showed altered splicing patterns for the CD44 receptor. Together, these data show that cells lacking p53 can activate alternative splicing following DNA damage.


DNA and Cell Biology | 2001

Effects of plasmid DNA injection on cyclophosphamide-accelerated diabetes in NOD mice.

Maria Filippova; Jingxue Liu; Alan Escher

Type 1 diabetes results in most cases from the destruction of insulin-secreting beta cells by the immune system. Several immunization methods based on administration of autoantigenic polypeptides such as insulin and glutamic acid decarboxylase (GAD) have been used to prevent autoimmune diabetes in the non-obese diabetic (NOD) mouse. In the work presented here, a gene-based approach was taken for a similar purpose. A plasmid carrying different cDNAs was used to investigate the effects of injecting naked DNA on cyclophosphamide-accelerated diabetes in female NOD mice. Four-week-old animals received intramuscular injections of plasmid DNA encoding either intracellular GAD, a secreted form of GAD, or a secreted form of a soft coral luciferase. Monitoring of glycosuria and hyperglycemia indicated that injection of plasmid DNA encoding secreted GAD and secreted luciferase could prevent and delay diabetes, respectively. In contrast, injection of DNA encoding intracellular GAD did not suppress the disease significantly. Analysis of anti-GAD IgG(1) antibody titers in animal sera indicated that diabetes prevention after injection of GAD-encoding DNA was possibly associated with increased Th2-type activity. These results suggest that cellular localization of GAD is a factor to consider in the design of GAD-based genetic vaccines for the prevention of autoimmune diabetes.


Viruses | 2012

Modulation of Apoptotic Pathways by Human Papillomaviruses (HPV): Mechanisms and Implications for Therapy

Chung-Hsiang Yuan; Maria Filippova; Penelope J. Duerksen-Hughes

The ability of the host to trigger apoptosis in infected cells is perhaps the most powerful tool by which viruses can be cleared from the host organism. To avoid elimination by this mechanism, human papillomaviruses (HPV) have developed several mechanisms that enable the cells they infect to elude both extrinsic and intrinsic apoptosis. In this manuscript, we review the current literature regarding how HPV-infected cells avoid apoptosis and the molecular mechanisms involved in these events. In particular, we will discuss the modifications in intrinsic and extrinsic apoptotic pathways caused by proteins encoded by HPV early genes. Many of the current efforts regarding anti-cancer drug development are focused on directing tumor cells to undergo apoptosis. However, the ability of HPV-infected cells to resist apoptotic signals renders such therapies ineffective. Possible mechanisms for overcoming the resistance of HPV-infected tumor cells to anticancer drugs will be discussed.


Molecular Cancer Research | 2012

The Stress Oncoprotein LEDGF/p75 Interacts with the Methyl CpG Binding Protein MeCP2 and Influences Its Transcriptional Activity

Lai Sum Leoh; Bart van Heertum; Jan De Rijck; Maria Filippova; Leslimar Rios-Colon; Anamika Basu; Shannalee R. Martinez; Sandy S. Tungteakkhun; Valeri Filippov; Frauke Christ; Marino De Leon; Zeger Debyser; Carlos A. Casiano

The lens epithelium–derived growth factor p75 (LEDGF/p75) is a transcription coactivator that promotes resistance to oxidative stress- and chemotherapy-induced cell death. LEDGF/p75 is also known as the dense fine speckles autoantigen of 70 kDa (DFS70) and has been implicated in cancer, HIV-AIDS, autoimmunity, and inflammation. To gain insights into mechanisms by which LEDGF/p75 protects cancer cells against stress, we initiated an analysis of its interactions with other transcription factors and the influence of these interactions on stress gene activation. We report here that both LEDGF/p75 and its short splice variant LEDGF/p52 interact with MeCP2, a methylation-associated transcriptional modulator, in vitro and in various human cancer cells. These interactions were established by several complementary approaches: transcription factor protein arrays, pull-down and AlphaScreen assays, coimmunoprecipitation, and nuclear colocalization by confocal microscopy. MeCP2 was found to interact with the N-terminal region shared by LEDGF/p75 and p52, particularly with the PWWP-CR1 domain. Like LEDGF/p75, MeCP2 bound to and transactivated the Hsp27 promoter (Hsp27pr). LEDGF/p75 modestly enhanced MeCP2-induced Hsp27pr transactivation in U2OS osteosarcoma cells, whereas this effect was more pronounced in PC3 prostate cancer cells. LEDGF/p52 repressed Hsp27pr activity in U2OS cells. Interestingly, siRNA-induced silencing of LEDGF/p75 in U2OS cells dramatically elevated MeCP2-mediated Hsp27pr transactivation, whereas this effect was less pronounced in PC3 cells depleted of LEDGF/p75. These results suggest that the LEDGF/p75–MeCP2 interaction differentially influences Hsp27pr activation depending on the cellular and molecular context. These findings are of significance in understanding the contribution of this interaction to the activation of stress survival genes. Mol Cancer Res; 10(3); 378–91. ©2012 AACR.


Molecular Cancer Research | 2008

Alternative Splicing and Caspase-Mediated Cleavage Generate Antagonistic Variants of the Stress Oncoprotein LEDGF/p75

Terry A. Brown-Bryan; Lai Sum Leoh; Vidya Ganapathy; Fabio J. Pacheco; Melanie Mediavilla-Varela; Maria Filippova; Thomas A. Linkhart; Rik Gijsbers; Zeger Debyser; Carlos A. Casiano

There is increasing evidence that an augmented state of cellular oxidative stress modulates the expression of stress genes implicated in diseases associated with health disparities such as certain cancers and diabetes. Lens epithelium–derived growth factor p75 (LEDGF/p75), also known as DFS70 autoantigen, is emerging as a survival oncoprotein that promotes resistance to oxidative stress–induced cell death and chemotherapy. We previously showed that LEDGF/p75 is targeted by autoantibodies in prostate cancer patients and is overexpressed in prostate tumors, and that its stress survival activity is abrogated during apoptosis. LEDGF/p75 has a COOH-terminally truncated splice variant, p52, whose role in stress survival and apoptosis has not been thoroughly investigated. We observed unbalanced expression of these proteins in a panel of tumor cell lines, with LEDGF/p75 generally expressed at higher levels. During apoptosis, caspase-3 cleaved p52 to generate a p38 fragment that lacked the NH2-terminal PWWP domain and failed to transactivate the Hsp27 promoter in reporter assays. However, p38 retained chromatin association properties and repressed the transactivation potential of LEDGF/p75. Overexpression of p52 or its variants with truncated PWWP domains in several tumor cell lines induced apoptosis, an activity that was linked to the presence of an intron-derived COOH-terminal sequence. These results implicate the PWWP domain of p52 in transcription function but not in chromatin association and proapoptotic activities. Consistent with their unbalanced expression in tumor cells, LEDGF/p75 and p52 seem to play antagonistic roles in the cellular stress response and could serve as targets for novel antitumor therapies. (Mol Cancer Res 2008;6(8):1293–307)


Gene | 2008

Splicing and splice factor SRp55 participate in the response to DNA damage by changing isoform ratios of target genes

Valery Filippov; Erin L. Schmidt; Maria Filippova; Penelope J. Duerksen-Hughes

Alternative splicing is an important source of protein diversity, and is an established but not yet fully understood mechanism for gene regulation in higher eukaryotes. Its regulation is governed by a variety of mechanisms, including variation in the expression levels of splicing factors engaged in spliceosome formation. SRp55 is one of the most ubiquitous splicing factors and one that can be up-regulated by DNA damage in the absence of p53, and we had previously found that depletion of its activity increased resistance to DNA damage in p53-dependant manner. To assess its influence on the splicing patterns of genes involved in apoptosis, we performed splice-specific microarray analysis of cells treated with siRNA specific for this gene. This analysis, backed by RT-PCR verification, identified three genes, KSR1, ZAK and mda7/IL24, which are sensitive to SRp55 depletion. We also analyzed the splice patterns of apoptosis-related genes in p53-deficient U2OS cells following treatment with the genotoxic drug mitomycin C. This analysis revealed that DNA damage resulted in changes in splicing activity that modified the splicing pattern of Fas, a key pro-apoptotic, p53-inducible death receptor. Interestingly, this modification led to an enrichment of the anti-apoptotic soluble Fas isoform, and this secreted isoform was detected in the media surrounding cells subjected to DNA damage. These findings show that modulation of splicing activity in p53-deficient cells during the early response to sub-lethal DNA damage results in a change in the splicing of target genes, thus modifying the cellular response to genotoxic agents.

Collaboration


Dive into the Maria Filippova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge