Maria Filomena Macedo
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Filomena Macedo.
Microbiology | 2009
Maria Filomena Macedo; A. Z. Miller; A. Dionísio; Cesáreo Sáiz-Jiménez
The presence and deteriorating action of micro-organisms on monuments and stone works of art have received considerable attention in the last few years. Knowledge of the microbial populations living on stone materials is the starting point for successful conservation treatment and control. This paper reviews the literature on cyanobacteria and chlorophyta that cause deterioration of stone cultural heritage (outdoor monuments and stone works of art) in European countries of the Mediterranean Basin. Some 45 case studies from 32 scientific papers published between 1976 and 2009 were analysed. Six lithotypes were considered: marble, limestone, travertine, dolomite, sandstone and granite. A wide range of stone monuments in the Mediterranean Basin support considerable colonization of cyanobacteria and chlorophyta, showing notable biodiversity. About 172 taxa have been described by different authors, including 37 genera of cyanobacteria and 48 genera of chlorophyta. The most widespread and commonly reported taxa on the stone cultural heritage in the Mediterranean Basin are, among cyanobacteria, Gloeocapsa, Phormidium and Chroococcus and, among chlorophyta, Chlorella, Stichococcus and Chlorococcum. The results suggest that cyanobacteria and chlorophyta colonize a wide variety of substrata and that this is related primarily to the physical characteristics of the stone surface, microclimate and environmental conditions and secondarily to the lithotype.
Science of The Total Environment | 2012
A. Z. Miller; Patricia Sanmartín; Lucía Pereira-Pardo; A. Dionísio; Cesáreo Sáiz-Jiménez; Maria Filomena Macedo; B. Prieto
In 1995, Guillitte defined bioreceptivity, a new term in ecology, as the ability of a material to be colonized by living organisms. Information about the bioreceptivity of stone is of great importance since it will help us to understand the material properties which influence the development of biological colonization in the built environment, and will also provide useful information as regards selecting stones for the conservation of heritage monuments and construction of new buildings. Studies of the bioreceptivity of stone materials are reviewed here with the aim of providing a clear set of conclusions on the topic. Definitions of bioreceptivity are given, stone bioreceptivity experiments are described, and finally the stone properties related to bioreceptivity are discussed. We suggest that a standardized laboratory protocol for evaluating stone bioreceptivity and definition of a stone bioreceptivity index are required to enable creation of a database on the primary bioreceptivity of stone materials.
Naturwissenschaften | 2009
Leonila Laiz; A. Z. Miller; Valme Jurado; E. V. Akatova; Sergio Sanchez-Moral; Juan M. Gonzalez; A. Dionísio; Maria Filomena Macedo; Cesáreo Sáiz-Jiménez
In the last few years, the microbial colonisation of mural paintings in ancient monuments has been attracting the attention of microbiologists and conservators. The genus Rubrobacter is commonly found in biodeteriorated monuments, where it has been reported to cause rosy discolouration. However, to date, only three species of this genus have been isolated, all from thermophilic environments. In this paper, we studied three monuments: the Servilia and Postumio tombs in the Roman Necropolis of Carmona (Spain), and Vilar de Frades church (Portugal), in search of Rubrobacter strains. In all cases, biodeterioration and the formation of efflorescences were observed, and five Rubrobacter strains were isolated. These isolates showed different physiology and migration in denaturing gradient gel electrophoresis, suggesting they might represent new species within this genus. The isolates reproduced some biodeterioration processes in the laboratory and revealed their biomediation in crystal formation.
Hydrobiologia | 2006
Pedro Duarte; Maria Filomena Macedo; Luís Cancela da Fonseca
The decrease of biodiversity related to the phenomena of global climate change is stimulating the scientific community towards a better understanding of the relationships between biodiversity and ecosystem functioning. In ecosystems where marked biodiversity changes occur at seasonal time scales, it is easier to relate them with ecosystem functioning. The objective of this work is to analyse the relationship between phytoplankton diversity and primary production in St. Andre coastal lagoon — SW Portugal. This lagoon is artificially opened to the sea every year in early spring, exhibiting a shift from a marine dominated to a low salinity ecosystem in winter. Data on salinity, temperature, nutrients, phytoplankton species composition, chlorophyll a (Chl a) concentration and primary production were analysed over a year. Modelling studies based on production-irradiance curves were also conducted. A total of 19 taxa were identified among diatoms, dinoflagellates and euglenophyceans, the less abundant group. Lowest diversities (Shannon— Wiener index) were observed just before the opening to the sea. Results show a negative correlation (p 90% of cell abundance) and production was maximal (up to 234.8 mg C m−3 h−1). Maximal photosynthetic rates (Pmax) (2.0–22.5 mg C mg Chl a −1 h−1) were higher under lower Chl a concentrations. The results of this work suggest that decreases in diversity are associated with increases in biomass and production, whereas increases correspond to opposite trends. It is suggested that these trends, contrary to those observed in terrestrial and in some benthic ecosystems, may be a result of low habitat diversity in the water column and resulting competitive pressure. The occurrence of the highest photosynthetic rates when Chl a is low, under some of the highest diversities, suggests a more efficient use of irradiance under low biomass-high diversity conditions. Results suggest that this increased efficiency is not explained by potential reductions in nutrient limitation and intraspecific competition under lower biomasses and may be a result of niche complementarity.
Science of The Total Environment | 2008
A. Z. Miller; Leonila Laiz; Juan M. Gonzalez; A. Dionísio; Maria Filomena Macedo; Cesáreo Sáiz-Jiménez
In order to understand the biodeterioration process occurring on stone monuments, we analyzed the microbial communities involved in these processes and studied their ability to colonize stones under controlled laboratory experiments. In this study, a natural green biofilm from a limestone monument was cultivated, inoculated on stone probes of the same lithotype and incubated in a laboratory chamber. This incubation system, which exposes stone samples to intermittently sprinkling water, allowed the development of photosynthetic biofilms similar to those occurring on stone monuments. Denaturing gradient gel electrophoresis (DGGE) analysis was used to evaluate the major microbial components of the laboratory biofilms. Cyanobacteria, green microalgae, bacteria and fungi were identified by DNA-based molecular analysis targeting the 16S and 18S ribosomal RNA genes. The natural green biofilm was mainly composed by the Chlorophyta Chlorella, Stichococcus, and Trebouxia, and by Cyanobacteria belonging to the genera Leptolyngbya and Pleurocapsa. A number of bacteria belonging to Alphaproteobacteria, Bacteroidetes and Verrucomicrobia were identified, as well as fungi from the Ascomycota. The laboratory colonization experiment on stone probes showed a colonization pattern similar to that occurring on stone monuments. The methodology described in this paper allowed to reproduce a colonization equivalent to the natural biodeteriorating process.
Annals of Microbiology | 2009
A. Z. Miller; A. Dionísio; Leonila Laiz; Maria Filomena Macedo; Cesáreo Sáiz-Jiménez
The influence of open porosity, water absorption capillarity, water vapour permeability, surface roughness, stone pH and chemical composition on stone bioreceptivity to phototrophic microorganisms was assessed by means of a thorough stone characterisation with subsequent artificially inoculation of limestone samples with a multi-species phototrophic culture and placing them inside a growth chamber for 90 days. A principal component analysis and an analysis of variance (ANOVA) were carried out in order to evaluate the direct relationships between stone bioreceptivity and petrophysical properties. From the principal component analysis, two main components were obtained and assigned a petrophysical/photosynthetic biomass meaning. Stone bioreceptivity, quantified by the amount of chlorophyll a and intensity of chlorophyll a fluorescence present on the stone samples after 90 days-incubation, was included in both principal components. The first component was linked to the amount of chlorophyll a and was highly and linearly associated to capillarity and roughness, and less associated with open porosity and water vapour permeability. The second component, linked to the intensity of chlorophyll a fluorescence measured on the stone surfaces, was not linearly associated with the petrophysycal properties, showing the fallibility of this in vivo chlorophyll quantification technique on the estimation of photosynthetic biomass growing on stone materials, particularly when endolithic growth occurs.
Journal of Experimental Marine Biology and Ecology | 2002
Maria Filomena Macedo; Pedro Duarte; J.G. Ferreira
In phytoplankton primary production studies, samples for the determination of photosynthesis versus irradiance relationship (P–I) are usually incubated at several irradiance levels during a fixed time period, commonly 2–4 h. However, it is not clear if the use of this fixed incubation time is appropriate to study the P–I relationship in any given ecosystem. The aim of this work was to study the influence of incubation time on the P–I relationship in natural phytoplankton populations from three different coastal ecosystems: an open coastal area, an estuary, and a coastal lagoon. Physical and chemical variables, phytoplankton biomass, species composition, and P–I curves were analysed. The results showed that, in the coastal area and in the estuary, P–I relationships were time dependent, whereas in the coastal lagoon different incubation periods produced the same P–I curve. An underestimation of daily primary production, ranging from 13% to 42.5%, was calculated when data from standard incubation times (2–4 h) were used in ecosystems where P–I curves present a dynamic time-dependent behaviour. This work suggests that the response of the P–I curves to the incubation time varies with the characteristics of the ecosystem and is related to the light regime to which phytoplankton cells are adapted.
Hydrobiologia | 2000
Maria Filomena Macedo; Pedro Duarte; João Ferreira; M. Alves; V. Costa
Physical, chemical and biological observations made in late July and August 1997 across the Azores Front (37° N, 32°W to 32° N, 29°W) are presented. The objectives of the study were: (1) to analyse horizontal and vertical profiles of temperature, salinity, density, nutrients and chlorophyll-a (Chl a) of the top 350 m; (2) to identify the main differences in the deep Chl a Maximum (DCM) and hydrographic structure between the water masses that pass north and south of the Azores Front; and (3) to estimate phytoplankton primary production in these water masses. Horizontal and vertical profiles of salinity, temperature, density, nutrients and phytoplankton pigments in the top 350 m were analysed. The Front separates two distinct water types: the 18 °C Mode Water (18 MW) of sub-tropical origin, and the 15 °C Mode Water (15 MW) of sub-polar origin. Differences in the DCM and hydrographic structure between 18 MW and 15 MW were observed in the contour plots of each section. The average Chl a concentration between 5 and 200 m depth decreased significantly from 15 MW to 18 MW. The same pattern was observed for the Chl a concentration at the DCM depth. A vertical one-dimensional model was used to estimate the phytoplankton primary production in the 15 MW and 18 MW and led to an estimated water column average gross primary productivity (GPP) between 1.08 and 2.71 mg C m−3 d−1 for the 15 MW and about half of these values for the 18 MW. These results indicate that the typical south–north positive slope on DCM depth parallels a latitudinal increase on GPP, suggesting that the location of the Azores Front may have a significant regional impact on GPP.
Restaurator-international Journal for The Preservation of Library and Archival Material | 2014
Sílvia Oliveira Sequeira; Eurico J. Cabrita; Maria Filomena Macedo
Abstract Paper biodeterioration by fungi has always been a concern in archives, libraries and museums. Several guidelines have been published regarding the prevention of fungal development in paper collections and recovery of affected objects, but what is actually being implemented from the literature by worldwide paper and book conservators? How common is this type of biodeterioration? What needs to be further studied? In order to access this information we conducted an online international questionnaire with participants from 20 different countries. The results show that fungal biodeterioration is highly common in paper collections. All of the respondents already had to deal with paper deteriorated by fungi, and although the vast majority uses active measures to prevent fungal development, most of them have already experienced active fungal infestations. The mainly used preventive measures are the ones concerned with the control of the environmental conditions in storage and display rooms. Drying the affected paper objects and applying 70% ethanol are the most preferred options to stop active fungal growth. The study of non-toxic and safer antifungals is considered here as the most relevant research topic in the area of paper biodeterioration by fungi, meaning that the options currently available are not totally satisfactory.
Geological Society, London, Special Publications | 2010
A. Z. Miller; Nuno Leal; Leonila Laiz; Miguel Ángel Rogerio-Candelera; R.J.C. Silva; A. Dionísio; Maria Filomena Macedo; Cesáreo Sáiz-Jiménez
Abstract Different Mediterranean Basin limestones, like Calcário Ançã (Portugal), Calcário Lioz (Portugal), Piedra San Cristobal (Spain), Piedra Escúzar (Spain) and Pietra di Lecce (Italy), have been widely used as building materials in the European architecture. The aim of this study was focused on biodeterioration, mainly on evaluation of the primary bioreceptivity of those materials. A set of samples was inoculated with a cultured photosynthetic biofilm under laboratory conditions. Several assessment tools were applied to monitor the colonization overtime of the different lithotypes. After 3 months of incubation the colonization occurred endolithically in some lithotypes, namely Piedra San Cristobal and Piedra Escúzar. Spectrophotometric determination of chlorophyll a was a useful analytical technique to achieve the total amount of photosynthetic biomass on rock substrates, demonstrating that Piedra Escúzar and Calcário Lioz were the highest and lowest bioreceptive lithotypes, respectively. Microscopic and image analyses were essential to understand the stone colonization process and its pattern of distribution. Physical stone parameters and exposure conditions were shown to play an important role in the establishment and development of photosynthetic colonization.