Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Flatau is active.

Publication


Featured researches published by Maria Flatau.


Journal of the Atmospheric Sciences | 1997

The Feedback between Equatorial Convection and Local Radiative and Evaporative Processes: The Implications for Intraseasonal Oscillations

Maria Flatau; Piotr J. Flatau; Patricia Phoebus; Pearn P. Niiler

Abstract Existing theories of the Madden–Julian oscillation neglect the feedback between the modification of sea surface temperature by the convection and development of a convective cluster itself. The authors show that the convection-generated SST gradient plays an important role in cluster propagation and development. The relative importance of radiative and evaporative fluxes in SST regulation is also discussed. Various Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment and Central Equatorial Pacific Experiment observation platforms are used to estimate the effects of equatorial convection on SST changes during March 1993. The data include drifting buoys and TAO-buoy array measurements, combined with the Navy Operational Global Atmospheric Prediction System analyzed surface wind fields and Geostationary Meteorological Satellite cloud-top temperatures. It is shown that during the equatorial convection episode SST is decreasing under and to the west of the convective heat sour...


Journal of Climate | 2003

The North Atlantic Oscillation, Surface Current Velocities, and SST Changes in the Subpolar North Atlantic

Maria Flatau; Lynne D. Talley; Pearn P. Niiler

Changes in surface circulation in the subpolar North Atlantic are documented for the recent interannual switch in the North Atlantic Oscillation (NAO) index from positive values in the early 1990s to negative values in 1995/96. Data from Lagrangian drifters, which were deployed in the North Atlantic from 1992 to 1998, were used to compute the mean and varying surface currents. NCEP winds were used to calculate the Ekman component, allowing isolation of the geostrophic currents. The mean Ekman velocities are considerably smaller than the mean total velocities that resemble historical analyses. The northeastward flow of the North Atlantic Current is organized into three strong cores associated with topography: along the eastern boundary in Rockall Trough, in the Iceland Basin (the subpolar front), and on the western flank of the Reykjanes Ridge (Irminger Current). The last is isolated in this Eulerian mean from the rest of the North Atlantic Current by a region of weak velocities on the east side of the Reykjanes Ridge. The drifter results during the two different NAO periods are compared with geostrophic flow changes calculated from the NASA/Pathfinder monthly gridded sea surface height (SSH) variability products and the Advanced Very High Resolution Radiometer (AVHRR) SST data. During the positive NAO years the northeastward flow in the North Atlantic Current appeared stronger and the circulation in the cyclonic gyre in the Irminger Basin became more intense. This was consistent with the geostrophic velocities calculated from altimetry data and surface temperature changes from AVHRR SST data, which show that during the positive NAO years, with stronger westerlies, the subpolar front was sharper and located farther east. SST gradients intensified in the North Atlantic Current, Irminger Basin, and east of the Shetland Islands during the positive NAO phase, associated with stronger currents. SST differences between positive and negative NAO years were consistent with changes in air‐sea heat flux and the eastward shift of the subpolar front. SST advection, as diagnosed from the drifters, likely acted to reduce the SST differences.


Journal of Climate | 2001

The Dynamics of Double Monsoon Onsets

Maria Flatau; Piotr J. Flatau; Daniel L. Rudnick

Abstract Double monsoon onset develops when the strong convection in the Bay of Bengal is accompanied by the monsoonlike circulation and appears in the Indian Ocean in early May, which is about 3 weeks earlier than the climatological date of the onset (1 Jun). The initial “bogus onset” is followed by the flow weakening or reversal and clear-sky and dry conditions over the monsoon region. The best example of such a phenomenon is the development of the summer monsoon in 1995, when monsoonlike perturbations that appeared in mid-May disappeared by the end of the month and were followed by a heat wave in India, delaying onset of the monsoon. The climatology of double onsets is analyzed, and it is shown that they are associated with delay of the monsoon rainfall over India. This analysis indicates that the development of bogus onsets depends on the timing of intraseasonal oscillation in the Indian Ocean and the propagation of convective episodes into the western Pacific. There is evidence that an SST evolution ...


Journal of Climate | 2013

Interaction between the MJO and Polar Circulations

Maria Flatau; Young-Joon Kim

AbstractA tropical–polar connection and its seasonal dependence are examined using the real-time multivariate Madden–Julian oscillation (MJO) (RMM) index and daily indices for the annular modes, the Arctic Oscillation (AO) and the Antarctic Oscillation (AAO). On the intraseasonal time scale, the MJO appears to force the annular modes in both hemispheres. On this scale, during the cold season, the convection in the Indian Ocean precedes the increase of the AO/AAO. Interestingly, during the boreal winter (Southern Hemisphere warm season), strong MJOs in the Indian Ocean are related to a decrease of the AAO index, and AO/AAO tendencies are out of phase. On the longer time scales, a persistent AO/AAO anomaly appears to influence the convection in the tropical belt and impact the distribution of MJO-preferred phases. It is shown that this may be a result of the sea surface temperature (SST) changes related to a persistent AO, with cooling over the Indian Ocean and warming over Indonesia. In the Southern Hemisp...


Remote Sensing | 2013

Large-Scale Oceanic Variability Associated with the Madden-Julian Oscillation during the CINDY/DYNAMO Field Campaign from Satellite Observations

Toshiaki Shinoda; Tommy G. Jensen; Maria Flatau; Sue Chen; Weiqing Han; Chunzai Wang

During the CINDY/DYNAMO field campaign (fall/winter 2011), intensive measurements of the upper ocean, including an array of several surface moorings and ship observations for the area around 75°E–80°E, Equator-10°S, were conducted. In this study, large-scale upper ocean variations surrounding the intensive array during the field campaign are described based on the analysis of satellite-derived data. Surface currents, sea surface height (SSH), sea surface salinity (SSS), surface winds and sea surface temperature (SST) during the CINDY/DYNAMO field campaign derived from satellite observations are analyzed. During the intensive observation period, three active episodes of large-scale convection associated with the Madden-Julian Oscillation (MJO) propagated eastward across the tropical Indian Ocean. Surface westerly winds near the equator were particularly strong during the events in late November and late December, exceeding 10 m/s. These westerlies generated strong eastward jets (>1 m/s) on the equator. Significant remote ocean responses to the equatorial westerlies were observed in both Northern and Southern Hemispheres in the central and eastern Indian Oceans. The anomalous SSH associated with strong eastward jets propagated eastward as an equatorial Kelvin wave and generated intense downwelling near the eastern boundary. The anomalous positive SSH then partly propagated westward around 4°S as a reflected equatorial Rossby wave, and it significantly influenced the upper ocean structure in the Seychelles-Chagos thermocline ridge about two months after the last MJO event during the field campaign. For the first time, it is demonstrated that subseasonal SSS variations in the central Indian Ocean can be monitored by Aquarius measurements based on the comparison with in situ observations at three locations. Subseasonal SSS variability in the central Indian Ocean observed by RAMA buoys is explained by large-scale water exchanges between the Arabian Sea and Bay of Bengal through the zonal current variation near the equator.


Journal of the Atmospheric Sciences | 2015

A Study of CINDY/DYNAMO MJO Suppressed Phase

Sue Chen; Maria Flatau; Tommy G. Jensen; Toshiaki Shinoda; Jerome M. Schmidt; Paul May; James Cummings; Ming Liu; Paul E. Ciesielski; Christopher W. Fairall; Ren-Chieh Lien; Dariusz B. Baranowski; Nan-Hsun Chi; Simon P. de Szoeke; James B. Edson

AbstractThe diurnal variability and the environmental conditions that support the moisture resurgence of MJO events observed during the Cooperative Indian Ocean Experiment on Intraseasonal Variability (CINDY)/DYNAMO campaign in October–December 2011 are investigated using in situ observations and the cloud-resolving fully air–ocean–wave Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Spectral density and wavelet analysis of the total precipitable water (TPW) constructed from the DYNAMO soundings and TRMM satellite precipitation reveal a deep layer of vapor resurgence during the observed Wheeler and Hendon real-time multivariate MJO index phases 5–8 (MJO suppressed phase), which include diurnal, quasi-2-, quasi-3–4-, quasi-6–8-, and quasi-16-day oscillations. A similar oscillatory pattern is found in the DYNAMO moorings sea surface temperature analysis, suggesting a tightly coupled atmosphere and ocean system during these periods. COAMPS hindcast focused on the 12–16 November 2011 event sugg...


Monthly Weather Review | 2013

Surface Wind and Upper-Ocean Variability Associated with the Madden–Julian Oscillation Simulated by the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS)

Toshiaki Shinoda; Tommy G. Jensen; Maria Flatau; Sue Chen

AbstractSimulation of surface wind and upper-ocean variability associated with the Madden–Julian oscillation (MJO) by a regional coupled model, the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), is evaluated by the comparison with in situ and satellite observations. COAMPS is configured for the tropical Indian Ocean domain with the horizontal resolution of 27 km for the atmospheric component and ⅛° for the ocean component. A high-resolution nested grid (9 km) for the atmospheric component is used for the central Indian Ocean. While observational data are assimilated into the atmospheric component, no data are assimilated into the ocean component. The model was integrated during 1 March–30 April 2009 when an active episode of large-scale convection associated with the MJO passed eastward across the Indian Ocean. During this MJO event, strong surface westerly winds (~8 m s−1) were observed in the central equatorial Indian Ocean, and they generated a strong eastward jet (~1 m s−1) on the equa...


Weather and Forecasting | 2010

Hindcasting the January 2009 Arctic Sudden Stratospheric Warming and Its Influence on the Arctic Oscillation with Unified Parameterization of Orographic Drag in NOGAPS. Part I: Extended-Range Stand-Alone Forecast

Young-Joon Kim; Maria Flatau

Abstract A very strong Arctic major sudden stratospheric warming (SSW) event occurred in late January 2009. The stratospheric temperature climbed abruptly and the zonal winds reversed direction, completely splitting the polar stratospheric vortex. A hindcast of this event is attempted by using the Navy Operational Global Atmospheric Prediction System (NOGAPS), which includes the full stratosphere with its top at around 65 km. As Part I of this study, extended-range (3 week) forecast experiments are performed using NOGAPS without the aid of data assimilation. A unified parameterization of orographic drag is designed by combining two parameterization schemes; one by Webster et al., and the other by Kim and Arakawa and Kim and Doyle. With the new unified orographic drag scheme implemented, NOGAPS is able to reproduce the salient features of this Arctic SSW event owing to enhanced planetary wave activity induced by more comprehensive subgrid-scale orographic drag processes. The impact of the SSW on the tropos...


Journal of Geophysical Research | 2015

Multiscale influences on extreme winter rainfall in the Philippines

Julie Pullen; Arnold L. Gordon; Maria Flatau; James D. Doyle; Cesar L. Villanoy; Olivia Cabrera

During 2007–2008, the Philippines experienced the greatest rainfall in 40 winters. We use a combination of observations (including 48 meteorological stations distributed throughout the islands, Tropical Rainfall Measuring Mission satellite-sensed precipitation, and shipboard measurements) along with a high-resolution two-way coupled ocean/atmosphere model (3 km Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS)®) to examine this anomalous season. As expected from climatology, rainfall was greatest on the eastern side of the archipelago, with seasonal totals exceeding 4000 mm in some locations. A moderate to strong La Nina increased the rainfall across the region. But discrete precipitation events delivered the bulk of the rain to the area and coincided with intense Madden-Julian oscillation activity over the archipelago and a late February cold surge. General patterns and magnitudes of rainfall produced by the two-way coupled model agreed with observations from land and from space. During the discrete events, the 3 km COAMPS also produced high amounts of precipitation in the mountainous parts of central Philippines. Direct observations were limited in this region. However, the government reported river flooding and evacuations in Mindoro during February 2008 as a result of significant rainfall. In addition, shipboard measurements from late January 2008 (collected by the Philippines Straits Dynamics Experiment) reveal a fresh lens of water to the west of the island of Mindoro, consistent with high freshwater discharge (river runoff) into the coastal area.


Journal of the Atmospheric Sciences | 1987

The Effect of Horizontal Pressure Gradients on the Momentum Transport in Tropical Convective Lines. Part I: The Results of the Convective Parameterization

Maria Flatau; Duane E. Stevens

Abstract Measuremenits of the momentum transport in tropical convective lines suggest that horizontal momentum can be generated by the pressure low located near the center of the convective part of the line. A simple convective parameterization is used to evaluate this effect. The parameterization is a version of the Fritsch and Chappell scheme, modified in order to evaluate the influence of the horizontal pressure gradients on momentum transport. The results suggest that in modeling of convective (particularly slow-moving) lines with 20 km resolution, subgrid horizontal pressure gradients should be taken into account. Sensitivity studies show that the magnitude of the calculated momentum flux strongly depends on the average vertical velocity and the vertical velocity in clouds.

Collaboration


Dive into the Maria Flatau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue Chen

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Timothy F. Hogan

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tommy G. Jensen

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Young-Joon Kim

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

Carolyn A. Reynolds

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

James A. Ridout

United States Naval Research Laboratory

View shared research outputs
Top Co-Authors

Avatar

James Cummings

United States Naval Research Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge