Maria Fossheim
Norwegian College of Fishery Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria Fossheim.
Proceedings of the Royal Society B: Biological Sciences | 2015
Susanne Kortsch; Raul Primicerio; Maria Fossheim; Andrey V. Dolgov; Michaela Aschan
Climate-driven poleward shifts, leading to changes in species composition and relative abundances, have been recently documented in the Arctic. Among the fastest moving species are boreal generalist fish which are expected to affect arctic marine food web structure and ecosystem functioning substantially. Here, we address structural changes at the food web level induced by poleward shifts via topological network analysis of highly resolved boreal and arctic food webs of the Barents Sea. We detected considerable differences in structural properties and link configuration between the boreal and the arctic food webs, the latter being more modular and less connected. We found that a main characteristic of the boreal fish moving poleward into the arctic region of the Barents Sea is high generalism, a property that increases connectance and reduces modularity in the arctic marine food web. Our results reveal that habitats form natural boundaries for food web modules, and that generalists play an important functional role in coupling pelagic and benthic modules. We posit that these habitat couplers have the potential to promote the transfer of energy and matter between habitats, but also the spread of pertubations, thereby changing arctic marine food web structure considerably with implications for ecosystem dynamics and functioning.
PLOS ONE | 2012
Edda Johannesen; Åge S. Høines; Andrey V. Dolgov; Maria Fossheim
Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial, freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly impacted by fisheries and other human activities. This strong human presence places great demands on scientific investigation and advisory capacity. In order to identify basic community structures against which future climate related or other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are indications that climate driven changes have already taken place, since boreal species were found in large parts of the Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature, we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in the Eastern Barents Sea can be described as diversity “hotspots”; the South-western area had high density of species, abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian).
Marine Biology Research | 2006
Maria Fossheim; Einar M. Nilssen; Michaela Aschan
Abstract Fish species inhabiting the Barents Sea display great seasonal and inter-annual variation in abundance and distribution. This study describes the assemblages and distributions of fish species in the southwestern and central part of the Barents Sea, which includes the polar front. The area has an unpredictable environment due to variable inflow of Atlantic water and fish species composition differs between Arctic and Atlantic water masses. Assemblages can be identified as distinct groups corresponding to different environmental conditions. In the period 1997–1999, 57 fish species and shrimp were identified and 29 species/species groups were used in the statistical analyses. Cluster and correspondence analyses showed that the fish community consists of four assemblages: a northern, a southern, a deep and a central group. Temperature explained 26.2% of the variation in the species data, and depth 14.5% of the variation. The assemblages are coherent with previous zoogeographical studies from the Barents Sea. To reduce research costs, one might monitor indicator species characteristic for the identified fish assemblages. Fish assemblages may be a good tool when studying ecosystem responses to fishery and marine climate change.
Proceedings of the National Academy of Sciences of the United States of America | 2017
André Frainer; Raul Primicerio; Susanne Kortsch; Magnus Aune; Andrey V. Dolgov; Maria Fossheim; Michaela Aschan
Significance Arctic marine ecosystems are experiencing a rapid biogeographic change following the highest warming rates observed around the globe in recent decades. Currently, there are no studies of how the observed shifts in species composition are affecting Arctic marine ecosystem functioning at a biogeographic scale. We address this issue via functional biogeography and show that increasing temperatures and reduced ice coverage are associated with the borealization of Arctic fish communities. We find that large body-sized piscivorous and semipelagic boreal species are replacing small-bodied benthivorous Arctic species, likely affecting biomass production in the benthic and pelagic compartments and their coupling. The documented speed and magnitude of climate-driven borealization will profoundly alter ecosystem functioning in the Arctic. Climate change triggers poleward shifts in species distribution leading to changes in biogeography. In the marine environment, fish respond quickly to warming, causing community-wide reorganizations, which result in profound changes in ecosystem functioning. Functional biogeography provides a framework to address how ecosystem functioning may be affected by climate change over large spatial scales. However, there are few studies on functional biogeography in the marine environment, and none in the Arctic, where climate-driven changes are most rapid and extensive. We investigated the impact of climate warming on the functional biogeography of the Barents Sea, which is characterized by a sharp zoogeographic divide separating boreal from Arctic species. Our unique dataset covered 52 fish species, 15 functional traits, and 3,660 stations sampled during the recent warming period. We found that the functional traits characterizing Arctic fish communities, mainly composed of small-sized bottom-dwelling benthivores, are being rapidly replaced by traits of incoming boreal species, particularly the larger, longer lived, and more piscivorous species. The changes in functional traits detected in the Arctic can be predicted based on the characteristics of species expected to undergo quick poleward shifts in response to warming. These are the large, generalist, motile species, such as cod and haddock. We show how functional biogeography can provide important insights into the relationship between species composition, diversity, ecosystem functioning, and environmental drivers. This represents invaluable knowledge in a period when communities and ecosystems experience rapid climate-driven changes across biogeographical regions.
PLOS ONE | 2013
Michaela Aschan; Maria Fossheim; Michael Greenacre; Raul Primicerio
Change in oceanographic conditions causes structural alterations in marine fish communities, but this effect may go undetected as most monitoring programs until recently mainly have focused on oceanography and commercial species rather than on whole ecosystems. In this paper, the objective is to describe the spatial and temporal changes in the Barents Sea fish community in the period 1992–2004 while taking into consideration the observed abundance and biodiversity patterns for all 82 observed fish species. We found that the spatial structure of the Barents Sea fish community was determined by abiotic factors such as temperature and depth. The observed species clustered into a deep assemblage, a warm water southern assemblage, both associated with Atlantic water, and a cold water north-eastern assemblage associated with mixed water. The latitude of the cold water NE and warm water S assemblages varied from year to year, but no obvious northward migration was observed over time. In the period 1996–1999 we observed a significant reduction in total fish biomass, abundance, mean fish weight, and a change in community structure including an increase in the pelagic/demersal ratio. This change in community structure is probably due to extremely cold conditions in 1996 impacting on a fish community exposed to historically high fishing rates. After 1999 the fish community variables such as biomass, abundance, mean weight, P/D ratio as well as community composition did not return to levels of the early 90s, although fishing pressure and climatic conditions returned to earlier levels.
Polar Biology | 2017
Edda Johannesen; Lis Lindal Jørgensen; Maria Fossheim; Raul Primicerio; Michael Greenacre; Pavel Ljubin; Andrey V. Dolgov; Randi Ingvaldsen; Natalya A. Anisimova; Igor Manushin
Biogeographical patterns have an ecological basis, but few empirical studies possess the necessary scale and resolution relevant for investigation. The Barents Sea shelf provides an ideal study area, as it is a transition area between Atlantic and Arctic regions, and is sampled by a comprehensive survey of all major functional groups. We studied spatial variation in species composition of demersal fish and benthos to elucidate how fish and benthos communities co-varied in relation to environmental variables. We applied co-correspondence analysis on presence–absence data of 64 fishes and 302 benthos taxa from 329 bottom trawl hauls taken at the Barents Sea ecosystem survey in August–September 2011. We found highly significant similarities in the spatial pattern of distribution of benthos and fishes, despite their differences in motility and other ecological traits. The first common ordination axis separated boreal species in the south-west (Atlantic temperate water) from Arctic species in the north-east (Arctic cold water, ice-covered in winter). The second common axis separated shallow bank species from species found in deep basins and trenches. Our results show that fish and benthos communities had a similar relationship to the environmental gradients at the scale of hundreds to thousands of kilometres. We further discussed how fish–benthos interactions vary between sub-regions in the Barents Sea based on species traits and a food web topology for the Barents Sea. This study forms a basis for further investigations on links between fish and benthos communities in the Barents Sea.
Nature Climate Change | 2015
Maria Fossheim; Raul Primicerio; Edda Johannesen; Randi Ingvaldsen; Michaela Aschan; Andrey V. Dolgov
Marine Ecology Progress Series | 2008
Maria Fossheim; Raul Primicerio
Marine Biology Research | 2006
Maria Fossheim; Einar M. Nilssen; Michaela Aschan
50 | 2017
Edda Johannesen; Herdis Langøy Mørk; Knut Korsbrekke; Rupert Wienerroither; Elena Eriksen; Maria Fossheim; Thomas de Lange Wenneck; Andrey V. Dolgov; Tatiana Prokhorova; Dmitry Prozorkevich
Collaboration
Dive into the Maria Fossheim's collaboration.
Knipovich Polar Research Institute of Marine Fisheries and Oceanography
View shared research outputs