María G. Guevara
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María G. Guevara.
European Journal of Plant Pathology | 2002
María G. Guevara; Claudia R. Oliva; Marcelo Huarte; Gustavo R. Daleo
Aspartic proteases (APs) one of the main proteinase classes, have different physiological functions in animals, fungi and viruses. In plants, knowledge of the biological roles of APs is less well developed. An AP has been purified from potato tuber and leaves (Guevara et al., 1999, 2001). In this paper, the changes in the level of AP in response to infection by Phytophthora infestans (P. infestans) and wounding were studied in intercellular washing fluids (IWFs) from tuber disks of two potato cultivars differing in their susceptibility to P. infestans. A differential induction was observed between both cultivars: in the resistant cultivar, induction was higher and faster in infected tissues than in wounded ones. In the susceptible cultivar, a lower and later accumulation was observed than in the resistant cultivar. In addition, AP had a direct inhibitory effect on the germination of cysts of P. infestans and conidia of Fusarium solani. The pattern of accumulation and in vitro activity of AP suggest that this enzyme may have a role in the defense response of potato.
Plant Physiology and Biochemistry | 2015
María Belén Fernández; Gustavo R. Daleo; María G. Guevara
Plant proteases with caspase-like enzymatic activity have been widely studied during the last decade. Previously, we have reported the presence and induction of caspase-3 like activity in the apoplast of potato leaves during Solanum tuberosum- Phytophthora infestans interaction. In this work we have purified and identified a potato extracellular protease with caspase-3 like enzymatic activity from potato leaves infected with P. infestans. Results obtained from the size exclusion chromatography show that the isolated protease is a monomeric enzyme with an estimated molecular weight of 70 kDa approximately. Purified protease was analyzed by MALDI-TOF MS, showing a 100% of sequence identity with the deduced amino acid sequence of a putative subtilisin-like protease from S. tuberosum (Solgenomics protein ID: PGSC0003DMP400018521). For this reason the isolated protease was named as StSBTc-3. This report constitutes the first evidence of isolation and identification of a plant subtilisin-like protease with caspase-3 like enzymatic activity. In order to elucidate the possible function of StSBTc-3 during plant pathogen interaction, we demonstrate that like animal caspase-3, StSBTc-3 is able to produce in vitro cytoplasm shrinkage in plant cells and to induce plant cell death. This result suggest that, StSBTc-3 could exert a caspase executer function during potato- P. infestans interaction, resulting in the restriction of the pathogen spread during plant-pathogen interaction.
Plant Physiology and Biochemistry | 2012
María Belén Fernández; Gustavo R. Daleo; María G. Guevara
Programmed cell death (PCD) occurs in plants, animals and several branches of unicellular eukaryotes as a part of developmental and/or defense processes. Caspase proteases are universal mediators of animal apoptosis, a type of PCD. In plants, there are not animal caspase homologs; therefore, the characterization of caspase-like activities is of considerable importance to our understanding of PCD in plants. Here we report for the first time the involvement of caspase-3-like activity in the resistance mechanism of potato to Phytophthora infestans infection. We showed that disease development in infected potato leaves is dependent of caspase-3-like activity. Unlike plant DEVDases previously reported, this DEVDase activity was sensitive to the serine protease inhibitor PMSF. As reported for other subtilisin- like proteases with caspase activity, potato DEVDase activity was mainly localized in the apoplast. We demonstrated that in total protein extract DEVDase activity accounts for a 60% of serine proteases; however, this percentage increases to 100% in the apoplast. Additionally, this caspase-3-like activity is constitutively expressed in the apoplast of potato leaves. Total DEVDase activity is induced only in potato cultivars with high field resistance to P. infestans. These results show that potato caspase-3-like protease could constitute a tool in the potato defense mechanisms resulting in partial resistance, although further assays would be necessary in order to elucidate its role.
Fitoterapia | 2010
Julieta R. Mendieta; Carmela Fimognari; Gustavo R. Daleo; Patrizia Hrelia; María G. Guevara
StAPs are potato aspartic proteases with cytotoxic activity against plant pathogens and spermatozoa. StAPs cytotoxic activity is selective, since these proteins do not exert toxic effect on plant cells and erythrocytes. In this work, we investigated the capacity of StAPs to exert cytotoxicity on human leukaemia cells. Obtained results show that StAPs induce apoptosis on Jurkat T cells after a short time of incubation in a dose-dependent manner. However, no significative effect on the T lymphocytes viability was observed at all StAPs incubation times and concentrations tested. These results suggest that StAPs can be conceptually promising leads for cancer therapy.
Protein and Peptide Letters | 2015
Gabriela F. Rocha; Walter David Obregón; Fernando Muñoz; María G. Guevara; Graciela Fernández; Adriana Mabel Rosso; Mónica G. Parisi
This report describes the purification of an aspartic protease (salpichroin) from ripe fruits of Salpichroa origanifolia (Solanaceae) starting with precipitation using organic solvents and anionexchange chromatography with 32.1% recovery and 13.4-fold purification. SDS-PAGE and zymograms of this enzyme showed a single band corresponding to an apparent molecular mass of approximately 32 kDa. The biochemical and kinetic characterization of the pure enzyme showed an acidic behavior with an optimal pH value around 3.0-4.5 with hemoglobin and 5.5-6.0 with casein. Salpichroin activity was inhibited by pepstatin but not by phenylmethylsulfonyl fluoride, E-64, EDTA or 1,10-phenanthroline, thus suggesting an aspartic protease behavior. Salpichroin hydrolyzed natural substrates, such as casein and hemoglobin, with high specific activity. Kinetic studies conducted with the synthetic peptide H-Pro- Thr-Glu-Phe-p-(NO2)-Phe-Arg-Leu-OH showed lower affinity (Km 494 µM) than other representative aspartic proteases. By investigating the cleavage of oxidized insulin β-chain to establish the hydrolytic specificity of salpichroin, we found six cleavage sites on the substrate of peptide bonds similar to those of chymosin. MALDI-TOF/TOF-MS of the tryptic ingel digest of salpichroin showed that the isolated protease shared homologous sequences with other plant proteases of the A1 aspartic protease family. This is the first report concerning the isolation and biochemical characterization of an aspartic protease isolated from Salpichroa origanifolia fruits.
Pest Management Science | 2006
Adriana B. Andreu; María G. Guevara; Erika A. Wolski; Gustavo R. Daleo; Daniel Osmar Caldiz
Microbiology | 2006
Julieta R. Mendieta; Mariana R. Pagano; Fernando F. Muñoz; Gustavo R. Daleo; María G. Guevara
Physiologia Plantarum | 2001
María G. Guevara; Gustavo R. Daleo; Claudia R. Oliva
Plant Physiology and Biochemistry | 2005
María G. Guevara; Carla Malaquias Almeida; Julieta R. Mendieta; Carlos Faro; Paula Veríssimo; Euclides Vieyras Pires; Gustavo R. Daleo
Physiologia Plantarum | 1999
María G. Guevara; Claudia R. Oliva; Milagros Machinandiarena; Gustavo R. Daleo