Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria G. Knyazeva is active.

Publication


Featured researches published by Maria G. Knyazeva.


Neuropsychopharmacology | 2008

Glutathione Precursor, N-Acetyl-Cysteine, Improves Mismatch Negativity in Schizophrenia Patients

Suzie Lavoie; Micah M. Murray; Patricia Deppen; Maria G. Knyazeva; Michael Berk; Oliviir Boulat; Pierre Bovet; Ashley I. Bush; Philippe Conus; David L. Copolov; Eleonora Fornari; Reto Meuli; Alessandra Solida; Pascal Vianin; Michel Cuenod; Thierry Buclin; Kim Q. Do

In schizophrenia patients, glutathione dysregulation at the gene, protein and functional levels, leads to N-methyl-D-aspartate (NMDA) receptor hypofunction. These patients also exhibit deficits in auditory sensory processing that manifests as impaired mismatch negativity (MMN), which is an auditory evoked potential (AEP) component related to NMDA receptor function. N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients to determine whether increased levels of brain glutathione would improve MMN and by extension NMDA function. A randomized, double-blind, cross-over protocol was conducted, entailing the administration of NAC (2g/day) for 60 days and then placebo for another 60 days (or vice versa). 128-channel AEPs were recorded during a frequency oddball discrimination task at protocol onset, at the point of cross-over, and at the end of the study. At the onset of the protocol, the MMN of patients was significantly impaired compared to sex- and age- matched healthy controls (p=0.003), without any evidence of concomitant P300 component deficits. Treatment with NAC significantly improved MMN generation compared with placebo (p=0.025) without any measurable effects on the P300 component. MMN improvement was observed in the absence of robust changes in assessments of clinical severity, though the latter was observed in a larger and more prolonged clinical study. This pattern suggests that MMN enhancement may precede changes to indices of clinical severity, highlighting the possible utility AEPs as a biomarker of treatment efficacy. The improvement of this functional marker may indicate an important pathway towards new therapeutic strategies that target glutathione dysregulation in schizophrenia.


NeuroImage | 2005

Assessment of EEG synchronization based on state-space analysis.

Cristian Carmeli; Maria G. Knyazeva; Giorgio M. Innocenti; Oscar De Feo

Cortical computation involves the formation of cooperative neuronal assemblies characterized by synchronous oscillatory activity. A traditional method for the identification of synchronous neuronal assemblies has been the coherence analysis of EEG signals. Here, we suggest a new method called S estimator, whereby cortical synchrony is defined from the embedding dimension in a state-space. We first validated the method on clusters of chaotic coupled oscillators and compared its performance to that of other methods for assessing synchronization. Then nine adult subjects were studied with high-density EEG recordings, while they viewed in the two hemifields (hence with separate hemispheres) identical sinusoidal gratings either arranged collinearly and moving together, or orthogonally oriented and moving at 90 degrees . The estimated synchronization increased with the collinear gratings over a cluster of occipital electrodes spanning both hemispheres, whereas over temporo-parietal regions of both hemispheres, it decreased with the same stimulus and it increased with the orthogonal gratings. Separate calculations for different EEG frequencies showed that the occipital clusters involved synchronization in the beta band and the temporal clusters in the alpha band. The gamma band appeared to be insensitive to stimulus diversity. Different stimulus configurations, therefore, appear to cause a complex rearrangement of synchronous neuronal assemblies distributed over the cortex, in particular over the visual cortex.


Neurobiology of Aging | 2010

Topography of EEG multivariate phase synchronization in early Alzheimer's disease

Maria G. Knyazeva; Mahdi Jalili; Andrea Brioschi; Isabelle Bourquin; Eleonora Fornari; Martin Hasler; Reto Meuli; Philippe Maeder; Joseph Ghika

Alzheimers disease (AD) is likely to disrupt the synchronization of the bioelectrical processes in the distributed cortical networks underlying cognition. We analyze the surface topography of the multivariate phase synchronization (MPS) of multichannel EEG in 17 patients (Clinical Dementia Rating (CDR) Scale: 0.5-1; Functional Assessment Staging (FAST): 3-4) compared to 17 controls by applying a combination of global and regional MPS measures to the resting EEG. In early AD, whole-head mapping reveals a specific landscape of synchronization characterized by a decrease in MPS over the fronto-temporal region and an increase over the temporo-parieto-occipital region predominantly of the left hemisphere. These features manifest themselves through the EEG delta-beta bands and discriminate patients from controls with an accuracy of up to 94%. Moreover, the abnormal MPS in both anterior and posterior clusters correlates with the Mini Mental State Examination score, binding regional EEG synchronization to cognitive decline in AD patients. The MPS technique reveals that the EEG phenotype of early AD is relevant to the clinical picture and may ultimately become its sensitive and specific biomarker.


PLOS ONE | 2012

Glutathione Precursor N -Acetyl-Cysteine Modulates EEG Synchronization in Schizophrenia Patients: A Double-Blind, Randomized, Placebo-Controlled Trial

Cristian Carmeli; Maria G. Knyazeva; Michel Cuenod; Kim Q. Do

Glutathione (GSH) dysregulation at the gene, protein, and functional levels has been observed in schizophrenia patients. Together with disease-like anomalies in GSH deficit experimental models, it suggests that such redox dysregulation can play a critical role in altering neural connectivity and synchronization, and thus possibly causing schizophrenia symptoms. To determine whether increased GSH levels would modulate EEG synchronization, N-acetyl-cysteine (NAC), a glutathione precursor, was administered to patients in a randomized, double-blind, crossover protocol for 60 days, followed by placebo for another 60 days (or vice versa). We analyzed whole-head topography of the multivariate phase synchronization (MPS) for 128-channel resting-state EEGs that were recorded at the onset, at the point of crossover, and at the end of the protocol. In this proof of concept study, the treatment with NAC significantly increased MPS compared to placebo over the left parieto-temporal, the right temporal, and the bilateral prefrontal regions. These changes were robust both at the group and at the individual level. Although MPS increase was observed in the absence of clinical improvement at a group level, it correlated with individual change estimated by Liddles disorganization scale. Therefore, significant changes in EEG synchronization induced by NAC administration may precede clinically detectable improvement, highlighting its possible utility as a biomarker of treatment efficacy. Trial Registration ClinicalTrials.gov NCT01506765


PLOS ONE | 2007

Dysconnection Topography in Schizophrenia Revealed with State-Space Analysis of EEG

Mahdi Jalili; Suzie Lavoie; Patricia Deppen; Reto Meuli; Kim Q. Do; Michel Cuenod; Martin Hasler; Oscar De Feo; Maria G. Knyazeva

Background The dysconnection hypothesis has been proposed to account for pathophysiological mechanisms underlying schizophrenia. Widespread structural changes suggesting abnormal connectivity in schizophrenia have been imaged. A functional counterpart of the structural maps would be the EEG synchronization maps. However, due to the limits of currently used bivariate methods, functional correlates of dysconnection are limited to the isolated measurements of synchronization between preselected pairs of EEG signals. Methods/Results To reveal a whole-head synchronization topography in schizophrenia, we applied a new method of multivariate synchronization analysis called S-estimator to the resting dense-array (128 channels) EEG obtained from 14 patients and 14 controls. This method determines synchronization from the embedding dimension in a state-space domain based on the theoretical consequence of the cooperative behavior of simultaneous time series—the shrinking of the state-space embedding dimension. The S-estimator imaging revealed a specific synchronization landscape in schizophrenia patients. Its main features included bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal region neighboring the midline. The synchronization topography was stable over the course of several months and correlated with the severity of schizophrenia symptoms. In particular, direct correlations linked positive, negative, and general psychopathological symptoms to the hyper-synchronized temporal clusters over both hemispheres. Along with these correlations, general psychopathological symptoms inversely correlated within the hypo-synchronized postcentral midline region. While being similar to the structural maps of cortical changes in schizophrenia, the S-maps go beyond the topography limits, demonstrating a novel aspect of the abnormalities of functional cooperation: namely, regionally reduced or enhanced connectivity. Conclusion/Significance The new method of multivariate synchronization significantly boosts the potential of EEG as an imaging technique compatible with other imaging modalities. Its application to schizophrenia research shows that schizophrenia can be explained within the concept of neural dysconnection across and within large-scale brain networks.


Neurobiology of Aging | 2012

Demyelination of superficial white matter in early Alzheimer's disease: a magnetization transfer imaging study

Eleonora Fornari; Philippe Maeder; Reto Meuli; Joseph Ghika; Maria G. Knyazeva

Assuming selective vulnerability of short association U-fibers in early Alzheimers disease (AD), we quantified demyelination of the surface white matter (dSWM) with magnetization transfer ratio (MTR) in 15 patients (Clinical Dementia Rating Scale [CDR] 0.5-1; Functional Assessment Staging [FAST]: 3-4) compared with 15 controls. MTRs were computed for 39 areas in each hemisphere. We found a bilateral MTR decrease in the temporal, cingulate, parietal, and prefrontal areas. With linear discriminant analysis, we successfully classified all the participants with 3 variates including the cuneus, parahippocampal, and superior temporal regions of the left hemisphere. The pattern of dSWM changed with the age of AD onset. In early onset patients, we found bilateral posterior demyelination spreading to the temporal areas in the left hemisphere. The late onset patients showed a distributed bilateral pattern with the temporal and cingulate areas strongly affected. A correlation with Mini Mental State Examination (MMSE), Lexis, and memory tests revealed the dSWM impact on cognition. A specific landscape of dSWM in early AD shows the potential of MTR imaging as an in vivo biomarker superior to currently used techniques.


Journal of Neurology, Neurosurgery, and Psychiatry | 2011

Psychogenic seizures and frontal disconnection: EEG synchronisation study

Maria G. Knyazeva; Mahdi Jalili; Richard S. J. Frackowiak; Andrea O. Rossetti

Objective Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. Methods The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. Results In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. Interpretation PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.


NeuroImage | 2006

Imaging of a synchronous neuronal assembly in the human visual brain.

Maria G. Knyazeva; Eleonora Fornari; Reto Meuli; Giorgio M. Innocenti; Philippe Maeder

Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. It remains to explore what characterizes the assemblies, their location, and the structural substrate of assembly formation. In this EEG/fMRI study, we describe the response of the visual areas of the two hemispheres in subjects who viewed bilateral iso-oriented (IG) or orthogonally-oriented (OG) moving gratings projected in the two hemifields. The IG stimulus synchronized activity across the hemispheres, as shown by an increased EEG coherence. The increase was restricted to the occipital electrodes and to the beta band. Compared with OG, IG increased the BOLD signal in a restricted territory corresponding to area VP/V4. Within this territory, a linear relation was found between the increased interhemispheric EEG coherence and BOLD. Thus, the increased BOLD localized a trans-hemispheric, synchronous neuronal assembly probably achieved by a callosal cortico-cortical connection. This assembly might reflect an early stage of perceptual grouping since the IG stimulus conforms to Gestalt psychology principles of collinearity and common fate.


Brain Research Reviews | 2001

EEG coherence studies in the normal brain and after early-onset cortical pathologies

Maria G. Knyazeva; Giorgio M. Innocenti

Visual corpus callosum (CC) preferentially interconnects neurons selective for similar stimulus orientation near the representations of the vertical meridian. These properties allow studying the CC functionality with EEG coherence analysis. Iso-oriented and orthogonally-oriented gratings were presented to the two hemifields, either close to the vertical meridian or far from it. In animals with intact CC, and in man, interhemispheric coherence (ICoh) increased only with iso-oriented gratings presented near or crossing the vertical meridian. The increase was localized to occipital electrodes and was specific for the beta-gamma frequency band. Visual-stimulus induced changes in ICoh were studied in patients with early pathologies of the visual areas. From a girl with abnormal vision and severe bilateral lesion of the primary visual areas at 3 weeks, after premature birth at 30 weeks, we obtained no ICoh response until 9 years. In control children visual stimulation increased occipital ICoh at 6-7 years. From a young man having suffered similar lesions when he was 9 months older than the girl, no consistent increase in ICoh could be obtained. In a 14-year-old girl with congenital visual agnosia, no visible lesions, but with a temporal-occipital epileptic focus, ICoh responses were evoked both by iso-oriented, and by orthogonally-oriented gratings. In a young man with bilateral parieto-occipital microgyria extending into the calcarine sulcus, visual stimuli increased ICoh as in normal individuals, but the response was weaker. These cases are discussed in terms of development of CC connections and point to a variety of plastic changes in the cortical connectivity of children.


Neural Plasticity | 2013

Splenium of Corpus Callosum: Patterns of Interhemispheric Interaction in Children and Adults

Maria G. Knyazeva

The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a childs brain.

Collaboration


Dive into the Maria G. Knyazeva's collaboration.

Top Co-Authors

Avatar

Reto Meuli

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Q. Do

University of Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Hasler

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge