Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria G. Masucci is active.

Publication


Featured researches published by Maria G. Masucci.


Nature Medicine | 2004

Small molecule RITA binds to p53, blocks p53–HDM-2 interaction and activates p53 function in tumors

Natalia Issaeva; Przemyslaw Bozko; Martin Enge; Marina Protopopova; Lisette G.G.C. Verhoef; Maria G. Masucci; Aladdin Pramanik; Galina Selivanova

In tumors that retain wild-type p53, its tumor-suppressor function is often impaired as a result of the deregulation of HDM-2, which binds to p53 and targets it for proteasomal degradation. We have screened a chemical library and identified a small molecule named RITA (reactivation of p53 and induction of tumor cell apoptosis), which bound to p53 and induced its accumulation in tumor cells. RITA prevented p53–HDM-2 interaction in vitro and in vivo and affected p53 interaction with several negative regulators. RITA induced expression of p53 target genes and massive apoptosis in various tumor cells lines expressing wild-type p53. RITA suppressed the growth of human fibroblasts and lymphoblasts only upon oncogene expression and showed substantial p53-dependent antitumor effect in vivo. RITA may serve as a lead compound for the development of an anticancer drug that targets tumors with wild-type p53.


Nature Biotechnology | 2000

Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells.

Nico P. Dantuma; Kristina Lindsten; Rickard Glas; Marianne Jellne; Maria G. Masucci

The ubiquitin/proteasome-dependent proteolytic pathway is an attractive target for therapeutics because of its critical involvement in cell cycle progression and antigen presentation. However, dissection of the pathway and development of modulators are hampered by the complexity of the system and the lack of easily detectable authentic substrates. We have developed a convenient reporter system by producing N-end rule and ubiquitin fusion degradation (UFD)-targeted green fluorescent proteins that allow quantification of ubiquitin/proteasome-dependent proteolysis in living cells. Accumulation of these reporters serves as an early predictor of G2/M arrest and apoptosis in cells treated with proteasome inhibitors. Comparison of reporter accumulation and cleavage of fluorogenic substrates demonstrates that the rate-limiting chymotrypsin-like activity of the proteasome can be substantially curtailed without significant effect on ubiquitin-dependent proteolysis. These reporters provide a new powerful tool for elucidation of the ubiquitin/proteasome pathway and for high throughput screening of compounds that selectively modify proteolysis in vivo.


Nature Biotechnology | 2003

A transgenic mouse model of the ubiquitin/proteasome system

Kristina Lindsten; Victoria Menéndez-Benito; Maria G. Masucci; Nico P. Dantuma

Impairment of the ubiquitin/proteasome system has been proposed to play a role in neurodegenerative disorders such as Alzheimer and Parkinson diseases. Although recent studies confirmed that some disease-related proteins block proteasomal degradation, and despite the existence of excellent animal models of both diseases, in vivo data about the system are lacking. We have developed a model for in vivo analysis of the ubiquitin/proteasome system by generating mouse strains transgenic for a green fluorescent protein (GFP) reporter carrying a constitutively active degradation signal. Administration of proteasome inhibitors to the transgenic animals resulted in a substantial accumulation of GFP in multiple tissues, confirming the in vivo functionality of the reporter. Moreover, accumulation of the reporter was induced in primary neurons by UBB+1, an aberrant ubiquitin found in Alzheimer disease. These transgenic animals provide a tool for monitoring the status of the ubiquitin/proteasome system in physiologic or pathologic conditions.


Journal of Cell Biology | 2002

Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation

Kristina Lindsten; Femke M. S. De Vrij; Lisette G.G.C. Verhoef; David F. Fischer; Fred W. van Leeuwen; Elly M. Hol; Maria G. Masucci; Nico P. Dantuma

Loss of neurons in neurodegenerative diseases is usually preceded by the accumulation of protein deposits that contain components of the ubiquitin/proteasome system. Affected neurons in Alzheimers disease often accumulate UBB+1, a mutant ubiquitin carrying a 19–amino acid C-terminal extension generated by a transcriptional dinucleotide deletion. Here we show that UBB+1 is a potent inhibitor of ubiquitin-dependent proteolysis in neuronal cells, and that this inhibitory activity correlates with induction of cell cycle arrest. Surprisingly, UBB+1 is recognized as a ubiquitin fusion degradation (UFD) proteasome substrate and ubiquitinated at Lys29 and Lys48. Full blockade of proteolysis requires both ubiquitination sites. Moreover, the inhibitory effect was enhanced by the introduction of multiple UFD signals. Our findings suggest that the inhibitory activity of UBB+1 may be an important determinant of neurotoxicity and contribute to an environment that favors the accumulation of misfolded proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species

Bettina Gruhne; Ramakrishna Sompallae; Diego Marescotti; Siamak Akbari Kamranvar; Stefano Gastaldello; Maria G. Masucci

The Epstein–Barr virus (EBV) nuclear antigen (EBNA)-1 is the only viral protein expressed in all EBV-carrying malignancies, but its contribution to oncogenesis has remained enigmatic. We show that EBNA-1 induces chromosomal aberrations, DNA double-strand breaks, and engagement of the DNA damage response (DDR). These signs of genomic instability are associated with the production of reactive oxygen species (ROS) and are reversed by antioxidants. The catalytic subunit of the leukocyte NADPH oxidase, NOX2/gp91phox, is transcriptionally activated in EBNA-1–expressing cells, whereas inactivation of the enzyme by chemical inhibitors or RNAi halts ROS production and DDR. These findings highlight a novel function of EBNA-1 and a possible mechanism by which expression of this viral protein could contribute to malignant transformation and tumor progression.


Nature Cell Biology | 2001

c- myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells

Riccardo Gavioli; Teresa Frisan; Simona Vertuani; Georg W. Bornkamm; Maria G. Masucci

Burkitts lymphoma (BL) is a highly malignant B-cell tumour characterized by chromosomal translocations that constitutively activate the c-myc oncogene. Here we show that BL cells are resistant to apoptosis and do not accumulate ubiquitin conjugates in response to otherwise toxic doses of inhibitors of the proteasome. Deubiquitinating enzymes and the cytosolic subtilisin-like protease tripeptidylpeptidase II are upregulated in BLs, and could be rapidly induced by the overexpression of c-myc in normal B cells carrying oestrogen-driven recombinant Epstein–Barr virus. Apoptosis was induced by inhibiting tripeptidylpeptidase II, suggesting that the activity of this protease may be required for the survival of BL cells. We thus show that there is a regulatory link between c-myc activation and changes in proteolysis that may affect malignant transformation.


Trends in Microbiology | 1994

Epstein-Barr virus: adaptation to a life within the immune system

Maria G. Masucci; Ingemar Ernberg

Epstein-Barr virus has developed multiple strategies to ensure its long-term persistence in the infected B cells of immunocompetent hosts. These include the establishment of cell-phenotype-specific programs of viral gene expression and the transduction of cellular genes that modulate immune responses. Cytotoxic T cells may specifically influence the evolution of this genetically stable virus.


Cellular Microbiology | 2002

The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non‐proliferating cells

LiQi Li; Anatoly Sharipo; Esteban Chaves-Olarte; Maria G. Masucci; Victor Levitsky; Monica Thelestam; Teresa Frisan

Cytolethal distending toxins (CDTs) block proliferation of mammalian cells by activating DNA damage‐induced checkpoint responses. We demonstrate that the Haemophilus ducreyi CDT (HdCDT) induces phosphorylation of the histone H2AX as early as 1 h after intoxication and re‐localization of the DNA repair complex Mre11 in HeLa cells with kinetics similar to those observed upon ionizing radiation. Early phosphorylation of H2AX was dependent on a functional Ataxia Telangiectasia mutated (ATM) kinase. Microinjection of a His‐tagged HdCdtB subunit, homologous to the mammalian DNase I, was sufficient to induce re‐localization of the Mre11 complex 1 h post treatment. However, the enzymatic potency was much lower than that exerted by bovine DNase I, which caused marked chromatin changes at 106 times lower concentrations than HdCdtB. H2AX phosphorylation and Mre11 re‐localization were induced also in HdCDT‐treated, non‐proliferating dendritic cells (DCs) in a differentiation dependent manner, and resulted in cell death. The data highlight several novel aspects of CDTs biology. We demonstrate that the toxin activates DNA damage‐associated molecules in an ATM‐dependent manner, both in proliferating and non‐proliferating cells, acting as other DNA damaging agents. Induction of apoptotic death of immature DCs by HdCDT may represent a previously unknown mechanism of immune evasion by CDT‐producing microbes.


European Journal of Cancer | 1994

Epstein-Barr virus (EBV)-encoded membrane protein LMP1 from a nasopharyngeal carcinoma is non-immunogenic in a murine model system, in contrast to a B cell-derived homologue

Pankaj Trivedi; Li-Fu Hu; Fu Chen; Maria G. Masucci; George Klein; Gösta Winberg; Birger Christensson

Epstein-Barr virus (EBV)-encoded LMP1 gene derived from a nude mouse passaged nasopharyngeal carcinoma (NPC) of Chinese origin (C-LMP1) and its B cell (B95-8 prototype)-derived counterpart (B-LMP1) were compared for their ability to induce tumour rejection in a mouse mammary adenocarcinoma system. Each of the two LMP1 genes was introduced individually by retroviral vectors into a non-immunogenic mammary carcinoma line, S6C, that originated in an ACA (H-2f) mouse. Syngeneic ACA mice were immunised for 3 consecutive weeks with irradiated B- or C-LMP1 expressors or control cells. The immunised and control mice were then challenged with graded numbers of viable cells from the corresponding cell line. Only the B-LMP1 expressing cells were highly immunogenic. Up to 10(5) cells were rejected in pre-immunised mice, whereas at least 10(2) cells grew in non-immunised controls. No rejection response was detected against the C-LMP1 expressing cells which grew equally well in control and immunised mice, with a minimum inoculum of 10(2) cells in the majority of the clones. In a previous study, we found numerous sequence differences between B- and C-LMP1. The question of whether any of these differences is related to the non-immunogenicity of C-LMP1 needs further investigation. Meanwhile, our findings raise the possibility that the NPC cells may escape host rejection by the development of a non-immunogenic LMP1 variant under the impact of immunoselection.


Oncogene | 2009

Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints

Bettina Gruhne; Ramakrishna Sompallae; Maria G. Masucci

Epstein–Barr virus (EBV) has been implicated in the pathogenesis of human malignancies, but its contribution to tumorigenesis is not well understood. EBV carriage is associated with increased genomic instability in Burkitts lymphoma, suggesting that viral products may induce this tumor phenotype. Using a panel of transfected sublines of the B-lymphoma line BJAB expressing the viral genes associated with latent infection, we show that the EBV nuclear antigens, EBNA-1 and EBNA-3C, and the latent membrane protein 1, LMP-1, independently promote genomic instability, as detected by nonclonal chromosomal aberrations, DNA breaks and phosphorylation of histone H2AX. EBNA-1 promotes the generation of DNA damage by inducing reactive oxygen species (ROS), whereas DNA repair is inhibited in LMP-1-expressing cells through downregulation of the DNA damage-sensing kinase, ataxia telangiectasia mutated (ATM), reduction of phosphorylation of its downstream targets Chk2 and inactivation of the G2 checkpoint. EBNA-3C enhances the propagation of damaged DNA through inactivation of the mitotic spindle checkpoint and transcriptional downregulation of BubR1. Thus, multiple cellular functions involved in the maintenance of genome integrity seem to be independently targeted by EBV, pointing to the induction of genomic instability as a critical event in viral oncogenesis.

Collaboration


Dive into the Maria G. Masucci's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Klein

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge