Maria G. Westdickenberg
RWTH Aachen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maria G. Westdickenberg.
Annales De L Institut Henri Poincare-probabilites Et Statistiques | 2009
Natalie Grunewald; Felix Otto; Cédric Villani; Maria G. Westdickenberg
Nous etudions un systeme sur reseau a variable de spin continue. Dans la premiere partie, nous etablissons deux resultats abstraits: des conditions suttisantes pour une inegalite de Sobolev logarithmique avec constante independante de la dimension (Theoreme 3), et des conditions suffisantes pour la convergence vers la limite hydrodynamique (Theoreme 8). Dans la seconde partie, nous utilisons ces resultats abstraits pour traiter un exemple specifique, a savoir la dynamique de Kawasaki avec un potentiel de type Ginzburg―Landau.
Siam Journal on Mathematical Analysis | 2014
Felix Otto; Maria G. Westdickenberg
We study the stability of a so-called kink profile for the one-dimensional Cahn--Hilliard problem on the real line. We derive optimal bounds on the decay to equilibrium under the assumption that the initial energy is less than three times the energy of a kink and that the initial
Calculus of Variations and Partial Differential Equations | 2015
Michael Gelantalis; Maria G. Westdickenberg
\dot{H}^{-1}
Journal of Statistical Physics | 2008
Eric Vanden-Eijnden; Maria G. Westdickenberg
distance to a kink is bounded. Working with the
Electronic Journal of Probability | 2014
Felix Otto; Hendrik Weber; Maria G. Westdickenberg
\dot{H}^{-1}
Indiana University Mathematics Journal | 2007
Maria G. Westdickenberg; Yoshihiro Tonegawa
distance is natural, since the equation is a gradient flow with respect to this metric. Indeed, our method is to establish and exploit elementary algebraic and differential relationships among three natural quantities: the energy, the dissipation, and the
Journal of Differential Equations | 2018
Sebastian Scholtes; Maria G. Westdickenberg
\dot{H}^{-1}
Archive | 2017
Olga Chugreeva; Maria G. Westdickenberg; Christof Melcher
distance to a kink. Along the way it is necessary and possible to control the time-dependent shift of the center of the
arXiv: Analysis of PDEs | 2018
Felix Otto; Sebastian Scholtes; Maria G. Westdickenberg
L^2
arXiv: Analysis of PDEs | 2017
Olga Chugreeva; Felix Otto; Maria G. Westdickenberg
closest kink. Our result is different from earlier results because we do not assume smallness of the initial distance to a kink; we assume only boundedness.