María Gabriela Lagorio
Facultad de Ciencias Exactas y Naturales
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Gabriela Lagorio.
Photochemical and Photobiological Sciences | 2006
Gabriela Cordon; María Gabriela Lagorio
The application of correction methods to account for re-absorption of chlorophyll fluorescence emission in leaves is subject to a number of controversies in the literature. These uncertainties lead to high discrepancies in the corrected spectral distribution of fluorescence and consequently in the interpretation of related physiological features of plants, according to the chosen method used in the process of correction. In this research, three correction methods, based on transmittance and/or reflectance measurements on leaves, were analysed comparatively. One method gave high values for the corrected fluorescence ratio between 685 nm and 737 nm (F685/F737 approximately 7 to 20 according to the different species of leaves). The two other methods were found to give similar results with corrected fluorescence ratios around a value of two (F685/F737 approximately 2). While the first method was developed in the light of empirical considerations, the latter two models are based upon defined physical approaches depicting interaction between light and matter. The theoretical basis of these methods, the validation methodologies used to support them and the similarity in the spectra corrected by light re-absorption for both models, all showed that they should be treated as confident and suitable approximations to solve the problem of light re-absorption in leaves.
Photochemical and Photobiological Sciences | 2004
María E. Ramos; María Gabriela Lagorio
True fluorescence spectra of leaves are obtained combining experimental emission and reflectance data. The model used is validated by measuring the system fluorescence in the absence of reabsorption processes (thin layer of chloroplasts).
Naturwissenschaften | 2010
Analia Iriel; María Gabriela Lagorio
Flower fluorescence has been previously proposed as a potential visual signal to attract pollinators. In this work, this point was addressed by quantitatively measuring the fluorescence quantum yield (Φf) for flowers of Bellis perennis (white, yellow, pink, and purple), Ornithogalum thyrsoides (petals and ovaries), Limonium sinuatum (white and yellow), Lampranthus productus (yellow), Petunia nyctaginiflora (white), Bougainvillea spectabilis (white and yellow), Antirrhinum majus (white and yellow), Eustoma grandiflorum (white and blue), Citrus aurantium (petals and stigma), and Portulaca grandiflora (yellow). The highest values were obtained for the ovaries of O. thyrsoides (Φf = 0.030) and for Citrus aurantium petals (Φf = 0.014) and stigma (Φf = 0.013). Emitted photons as fluorescence were compared with reflected photons. It was concluded that the fluorescence emission is negligible compared to the reflected light, even for the most fluorescent samples, and it may not be considered as an optical signal in biocommunication. The work was complemented with the calculation of quantum catches for each studied flower species to describe the visual sensitization of eye photoreceptors.
Photochemistry and Photobiology | 2014
Analia Iriel; Johanna Mendes Novo; Gabriela Cordon; María Gabriela Lagorio
In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II–Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II.
Photochemical and Photobiological Sciences | 2007
Gabriela Cordon; María Gabriela Lagorio
Emission fluorescence spectra were obtained for the adaxial and abaxial faces of dicotyledonous (Ficus benjamina L., Ficus elastica, Gardenia jasminoides and Hedera helix) and monocotyledonous leaves (Gladiolus spp. and Dracaena cincta bicolor). After correction by light-re-absorption processes, using a previously published physical model, the adaxial faces of dicotyledons showed a fluorescence ratio Fred/Ffar-red rather lower than the respective values for the abaxial faces. Monocotyledons and shade-adapted-plants showed similar values for the corrected fluorescence ratio for both faces. Even when differences in experimental fluorescence emission from adaxial and abaxial leaves in dicotyledons are mostly due to light re-absorption processes, the residual dissimilarity found after application of the correction model would point to the fact that fluorescence re-absorption is not the only responsible for the observed disparity. It was concluded that light re-absorption processes does not account entirely for the differences in the experimental emission spectra between adaxial and abaxial leaves. Differences that remains still present after correction might be interpreted in terms of a different photosystem ratio (PSII/PSI). Experiments at low temperature sustained this hypothesis. In dicotyledons, light reflectance for adaxial leaves was found to be lower than for the abaxial ones. It was mainly due to an increase in the scattering coefficient for the lower leaf-side. The absorption coefficient values were slightly higher for the upper leaf-side. During senescence of Ficus benjamina leaves, the scattering coefficient increased for both the upper and lower leaf-sides. With senescence time the absorption coefficient spectra broadened while the corrected fluorescence ratio (Fred/Ffar-red) decreased for both faces. The results pointed to a preferential destruction of photosystem II relative to photosystem I during senescence.
Photochemical and Photobiological Sciences | 2006
María E. Ramos; María Gabriela Lagorio
Chlorophyll-a contained in the peel of Granny Smith apples emits fluorescence upon excitation with blue light. The observed emission, collected by an external detector and corrected by its spectral response, is still distorted by light reabsorption processes taking place in the fruit skin and differs appreciably from the true spectral distribution of fluorescence emerging from chlorophyll molecules in the biological tissue. Reabsorption processes particularly affect the ratio of fluorescence intensities at 680 nm and at 730 nm. A model to obtain the correct spectral distribution of the emission, from the experimental fluorescence recorded at a fluorometer detector and corrected for the detector spectral sensitivity, is developed in the present work. Measurements of the whole fruit reflectance, the peel transmittance and the flesh reflectance allow the calculation of the reabsorption-corrected spectra. The model is validated by comparing the corrected emission spectra with that obtained for a thin layer of apple-peel-chloroplasts, where no reabsorption takes place. It is recommended to correct distortions in emission spectra of intact fruits due to light reabsorption effects whenever a correlation between the physiological state of the fruit and its fluorescence spectra is investigated.
Chemosphere | 2015
Analia Iriel; Gavin Dundas; Alicia Fernández Cirelli; María Gabriela Lagorio
Arsenic pollution of groundwater is a serious problem in many regions of Latin America that causes severe risks to human health. As a consequence, non-destructive monitoring methodologies, sensitive to arsenic presence in the environment and able to perform a rapid screening of large polluted areas, are highly sought-after. Both chlorophyll - a fluorescence and reflectance of aquatic plants may be potential indicators to sense toxicity in water media. In this work, the effects of arsenic on the optical and photophysical properties of leaves of different aquatic plants (Vallisneria gigantea, Azolla filiculoides and Lemna minor) were evaluated. Reflectance spectra were recorded for the plant leaves from 300 to 2400 nm. The spectral distribution of the fluorescence was also studied and corrected for light re-absorption processes. Photosynthetic parameters (Fv/Fm and ΦPSII) were additionally calculated from the variable chlorophyll fluorescence recorded with a pulse amplitude modulated fluorometer. Fluorescence and reflectance properties for V. gigantea and A. filiculoides were sensitive to arsenic presence in contrast to the behaviour of L. minor. Observed changes in fluorescence spectra could be interpreted in terms of preferential damage in photosystem II. The quantum efficiency of photosystem II for the first two species was also affected, decreasing upon arsenic treatment. As a result of this research, V. gigantea and A. filiculoides were proposed as bioindicators of arsenic occurrence in aquatic media.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Carlos Taboada; Andrés E. Brunetti; Federico N. Pedron; Fausto Carnevale Neto; Darío A. Estrin; Sara E. Bari; Lucía B. Chemes; Norberto Peporine Lopes; María Gabriela Lagorio; Julián Faivovich
Significance In this interdisciplinary study, we report naturally occurring fluorescence in amphibians; specifically, in a common South American tree frog. We show that fluorescence is traceable to a class of compound that occurs in lymph and skin glands. Our study indicates that in our model species, in low-light conditions, fluorescence accounts for an important fraction of the total emerging light, largely enhancing brightness of the individuals and matching the sensitivity of night vision in amphibians. These findings open an exciting perspective into frog visual physiology and ecology and into the role of fluorescence in terrestrial environments, where classically it has been considered irrelevant. Fluorescence, the absorption of short-wavelength electromagnetic radiation reemitted at longer wavelengths, has been suggested to play several biological roles in metazoans. This phenomenon is uncommon in tetrapods, being restricted mostly to parrots and marine turtles. We report fluorescence in amphibians, in the tree frog Hypsiboas punctatus, showing that fluorescence in living frogs is produced by a combination of lymph and glandular emission, with pigmentary cell filtering in the skin. The chemical origin of fluorescence was traced to a class of fluorescent compounds derived from dihydroisoquinolinone, here named hyloins. We show that fluorescence contributes 18−29% of the total emerging light under twilight and nocturnal scenarios, largely enhancing brightness of the individuals and matching the sensitivity of night vision in amphibians. These results introduce an unprecedented source of pigmentation in amphibians and highlight the potential relevance of fluorescence in visual perception in terrestrial environments.
Photochemistry and Photobiology | 2013
Johanna Mendes Novo; Analia Iriel; María Claudia Marchi; María Gabriela Lagorio
The organs of Origanum vulgare L. plant were examined by optical microscopy, scanning electron microscopy and autofluorescence imaging. The different organs were also studied spectroscopically. Fluorescence emission spectra were recorded for intact inflorescences, leaves and stems. Several fluorescence ratios (Blue/Red, Blue/Far‐red, Green/Red and Green/Far‐red), which varied depending on the considered organ of the plant, were derived. For leaves, a dependence of fluorescence spectra with water content was obtained as well. The intact samples were also analyzed by Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. These spectra were transformed to the Remission function depending on the wavenumber and two absorption bands (811 and 1740 cm−1), which displayed differences according to the plant organ sampled, were detected. These results were consistent with higher carvacrol content in inflorescences. The spectroscopic results were connected with the microscopic observation and with the presence of relevant nutraceutics contained in the plant. The optical indexes derived in this work may serve as potential indicators to be explored in the development of nondestructive methods for oregano quality assessment.
South American Journal of Herpetology | 2017
Carlos Taboada; Andrés E. Brunetti; César Alexandre; María Gabriela Lagorio; Julián Faivovich
Abstract. In this paper we present information on fluorescent frogs that will be of use to interested researchers. We describe practical details and provide new data on the phenomenon in Boana punctata, while reporting for the first time its occurrence in the closely related B. atlantica. Both species leave persistent fluorescent marks on the substrate in field and lab conditions, the biological role of which, if any, remains unknown. We discuss briefly the heuristic criteria employed to identify other anuran species most likely to be fluorescent—at least in a similar way to that described in B. atlantica and B. punctata—and provide a list of 281 species in seven families (Arthroleptidae, Centrolenidae, Hemiphractidae, Hylidae, Hyperoliidae, Mantellidae, and Rhacophoridae) that should be tested for the occurrence of fluorescence. Finally, we discuss some general aspects related to anuran coloration, fluorescence, and criteria to assess its biological role, if any, commenting on the role of pteridins and hypothetical situations where these could lead to fluorescence in a different way than how we see it in B. atlantica and B. punctata.