Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Gabriella Cusella De Angelis is active.

Publication


Featured researches published by Maria Gabriella Cusella De Angelis.


Journal of Cellular Physiology | 2008

Scaffold's Surface Geometry Significantly Affects Human Stem Cell Bone Tissue Engineering

Antonio Graziano; Riccardo d'Aquino; Maria Gabriella Cusella De Angelis; Francesco De Francesco; Antonio Giordano; Gregorio Laino; Adriano Piattelli; Tonino Traini; Alfredo De Rosa; Gianpaolo Papaccio

In this study, we have observed dental pulp stem cells (SBP‐DPSCs) performances on different scaffolds, such as PLGA 85:15, hydroxyapatite chips (HA) and titanium. Stem cells were challenged with each engineered surface, either in plane cultures or in a rotating apparatus, for a month. Gingival fibroblasts were used as controls. Results showed that stem cells exerted a different response, depending on the different type of textured surface: in fact, microconcavities significantly affected SBP‐DPSC differentiation into osteoblasts, both temporally and quantitatively, with respect to the other textured surfaces. Actually, stem cells challenged with concave surfaces differentiated quicker and showed nuclear polarity, an index of secretion, cellular activity and matrix formation. Moreover, bone‐specific proteins were significantly expressed and the obtained bone tissue was of significant thickness. Thus, cells cultured on the concave textured surface had better cell‐scaffold interactions and were induced to secrete factors that, due to their autocrine effects, quickly lead to osteodifferentiation, bone tissue formation, and vascularization. The worst cell performance was obtained using convex surfaces, due to the scarce cell proliferation on to the scaffold and the poor matrix secretion. In conclusion, this study stresses that for a suitable and successful bone tissue reconstruction the surface texture is of paramount importance. J. Cell. Physiol. 214:166–172, 2008.


PLOS ONE | 2007

Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation.

Antonio Graziano; Riccardo d'Aquino; Maria Gabriella Cusella De Angelis; Gregorio Laino; Adriano Piattelli; Maurizio Pacifici; Alfredo De Rosa; Gianpaolo Papaccio

Background Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear. Methodology and Findings In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80–120 µm in diameter and 40–100 µm in depth, which we termed primary; and (ii) smaller microcavities of 10–20 µm in diameter and 3–10 µm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold. Conclusion In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the future.


BioResearch Open Access | 2013

A comparative analysis of the in vitro effects of pulsed electromagnetic field treatment on osteogenic differentiation of two different mesenchymal cell lineages.

Gabriele Ceccarelli; Nora Bloise; Melissa Mantelli; Giulia Gastaldi; Lorenzo Fassina; Maria Gabriella Cusella De Angelis; Davide Ferrari; Marcello Imbriani; Livia Visai

Abstract Human mesenchymal stem cells (MSCs) are a promising candidate cell type for regenerative medicine and tissue engineering applications. Exposure of MSCs to physical stimuli favors early and rapid activation of the tissue repair process. In this study we investigated the in vitro effects of pulsed electromagnetic field (PEMF) treatment on the proliferation and osteogenic differentiation of bone marrow MSCs (BM-MSCs) and adipose-tissue MSCs (ASCs), to assess if both types of MSCs could be indifferently used in combination with PEMF exposure for bone tissue healing. We compared the cell viability, cell matrix distribution, and calcified matrix production in unstimulated and PEMF-stimulated (magnetic field: 2 mT, amplitude: 5 mV) mesenchymal cell lineages. After PEMF exposure, in comparison with ASCs, BM-MSCs showed an increase in cell proliferation (p<0.05) and an enhanced deposition of extracellular matrix components such as decorin, fibronectin, osteocalcin, osteonectin, osteopontin, and type-I and -III collagens (p<0.05). Calcium deposition was 1.5-fold greater in BM-MSC–derived osteoblasts (p<0.05). The immunofluorescence related to the deposition of bone matrix proteins and calcium showed their colocalization to the cell-rich areas for both types of MSC-derived osteoblast. Alkaline phosphatase activity increased nearly 2-fold (p<0.001) and its protein content was 1.2-fold higher in osteoblasts derived from BM-MSCs. The quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis revealed up-regulated transcription specific for bone sialoprotein, osteopontin, osteonectin, and Runx2, but at a higher level for cells differentiated from BM-MSCs. All together these results suggest that PEMF promotion of bone extracellular matrix deposition is more efficient in osteoblasts differentiated from BM-MSCs.


Journal of Biomedical Optics | 2013

Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors

Nora Bloise; Gabriele Ceccarelli; Paolo Minzioni; Marco Vercellino; Laura Benedetti; Maria Gabriella Cusella De Angelis; Marcello Imbriani; Livia Visai

Abstract. Several studies have shown that low-level laser irradiation (LLLI) has beneficial effects on bone regeneration. The objective of this study was to examine the in vitro effects of LLLI on proliferation and differentiation of a human osteoblast-like cell line (Saos-2 cell line). Cultured cells were exposed to different doses of LLLI with a semiconductor diode laser (659 nm; 10 mW power output). The effects of laser on proliferation were assessed daily up to seven days of culture in cells irradiated once or for three consecutive days with laser doses of 1 or 3  J/cm2. The obtained results showed that laser stimulation enhances the proliferation potential of Saos-2 cells without changing their telomerase pattern or morphological characteristics. The effects on cell differentiation were assessed after three consecutive laser irradiation treatments in the presence or absence of osteo-inductive factors on day 14. Enhanced secretion of proteins specific for differentiation toward bone as well as calcium deposition and alkaline phosphatase activity were observed in irradiated cells cultured in a medium not supplemented with osteogenic factors. Taken together these findings indicate that laser treatment enhances the in vitro proliferation of Saos-2 cells, and also influences their osteogenic maturation, which suggest it is a helpful application for bone tissue regeneration.


FEBS Journal | 2008

Disruption of the gene encoding 3β‐hydroxysterol Δ14‐reductase (Tm7sf2) in mice does not impair cholesterol biosynthesis

Anna Maria Bennati; Gianluca Schiavoni; Sebastian Franken; Danilo Piobbico; Maria Agnese Della Fazia; Donatella Caruso; Emma De Fabiani; Laura Benedetti; Maria Gabriella Cusella De Angelis; Volkmar Gieselmann; Giuseppe Servillo; Tommaso Beccari; Rita Roberti

Tm7sf2 gene encodes 3β‐hydroxysterol Δ14‐reductase (C14SR, DHCR14), an endoplasmic reticulum enzyme acting on Δ14‐unsaturated sterol intermediates during the conversion of lanosterol to cholesterol. The C‐terminal domain of lamin B receptor, a protein of the inner nuclear membrane mainly involved in heterochromatin organization, also possesses sterol Δ14‐reductase activity. The subcellular localization suggests a primary role of C14SR in cholesterol biosynthesis. To investigate the role of C14SR and lamin B receptor as 3β‐hydroxysterol Δ14‐reductases, Tm7sf2 knockout mice were generated and their biochemical characterization was performed. No Tm7sf2 mRNA was detected in the liver of knockout mice. Neither C14SR protein nor 3β‐hydroxysterol Δ14‐reductase activity were detectable in liver microsomes of Tm7sf2(−/−) mice, confirming the effectiveness of gene inactivation. C14SR protein and its enzymatic activity were about half of control levels in the liver of heterozygous mice. Normal cholesterol levels in liver membranes and in plasma indicated that, despite the lack of C14SR, Tm7sf2(−/−) mice are able to perform cholesterol biosynthesis. Lamin B receptor 3β‐hydroxysterol Δ14‐reductase activity determined in liver nuclei showed comparable values in wild‐type and knockout mice. These results suggest that lamin B receptor, although residing in nuclear membranes, may contribute to cholesterol biosynthesis in Tm7sf2(−/−) mice. Affymetrix microarray analysis of gene expression revealed that several genes involved in cell‐cycle progression are downregulated in the liver of Tm7sf2(−/−) mice, whereas genes involved in xenobiotic metabolism are upregulated.


Journal of Biomedical Materials Research Part A | 2009

In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite

Lorenzo Fassina; Enrica Saino; M. S. Sbarra; Livia Visai; Maria Gabriella Cusella De Angelis; Giovanni Magenes; Francesco Benazzo

One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix.


Journal of Biomedical Materials Research Part A | 2008

Electromagnetic enhancement of a culture of human SAOS-2 osteoblasts seeded onto titanium fiber-mesh scaffolds

Lorenzo Fassina; Enrica Saino; Livia Visai; Giulia Silvani; Maria Gabriella Cusella De Angelis; Giuliano Mazzini; Francesco Benazzo; Giovanni Magenes

The surface properties of a biomaterial are fundamental to determine the response of the host tissue. In the present study, we have followed a particular biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built a calcified extracellular matrix on a titanium fiber-mesh surface. In comparison with control conditions, the electromagnetic stimulation (magnetic field intensity, 2 mT; frequency, 75 Hz) caused higher cell proliferation and increased surface coating with type-I collagen, decorin, and osteopontin (9.8-fold, 11.3-fold, and 9.5-fold, respectively). Reverse transcriptase-polymerase analysis revealed the electromagnetically upregulated transcription specific for the foregoing matrix proteins and for the growth factor TGF-beta1. The immunofluorescence of type-I collagen, decorin, and osteopontin showed their colocalization in the cell-rich areas. The use of an electromagnetic bioreactor aimed at obtaining the surface modification of the biocompatible metallic scaffold in terms of cell colonization and coating with calcified extracellular matrix. The superficially modified biomaterial could be used, in clinical applications, as an implant for bone repair.


PLOS ONE | 2012

Bottom-up engineering of biological systems through standard bricks: a modularity study on basic parts and devices.

Lorenzo Pasotti; Nicolò Politi; Susanna Zucca; Maria Gabriella Cusella De Angelis; Paolo Magni

Background Modularity is a crucial issue in the engineering world, as it enables engineers to achieve predictable outcomes when different components are interconnected. Synthetic Biology aims to apply key concepts of engineering to design and construct new biological systems that exhibit a predictable behaviour. Even if physical and measurement standards have been recently proposed to facilitate the assembly and characterization of biological components, real modularity is still a major research issue. The success of the bottom-up approach strictly depends on the clear definition of the limits in which biological functions can be predictable. Results The modularity of transcription-based biological components has been investigated in several conditions. First, the activity of a set of promoters was quantified in Escherichia coli via different measurement systems (i.e., different plasmids, reporter genes, ribosome binding sites) relative to an in vivo reference promoter. Second, promoter activity variation was measured when two independent gene expression cassettes were assembled in the same system. Third, the interchangeability of input modules (a set of constitutive promoters and two regulated promoters) connected to a fixed output device (a logic inverter) expressing GFP was evaluated. The three input modules provide tunable transcriptional signals that drive the output device. If modularity persists, identical transcriptional signals trigger identical GFP outputs. To verify this, all the input devices were individually characterized and then the input-output characteristic of the logic inverter was derived in the different configurations. Conclusions Promoters activities (referred to a standard promoter) can vary when they are measured via different reporter devices (up to 22%), when they are used within a two-expression-cassette system (up to 35%) and when they drive another device in a functionally interconnected circuit (up to 44%). This paper provides a significant contribution to the study of modularity limitations in building biological systems by providing useful data on context-dependent variability of biological components.


Journal of Biological Engineering | 2011

Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release

Lorenzo Pasotti; Susanna Zucca; Manuel Lupotto; Maria Gabriella Cusella De Angelis; Paolo Magni

BackgroundBacterial cell lysis is a widely studied mechanism that can be achieved through the intracellular expression of phage native lytic proteins. This mechanism can be exploited for programmed cell death and for gentle cell disruption to release recombinant proteins when in vivo secretion is not feasible. Several genetic parts for cell lysis have been developed and their quantitative characterization is an essential step to enable the engineering of synthetic lytic systems with predictable behavior.ResultsHere, a BioBrick™ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction.ConclusionsThe studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population.


BMC Bioinformatics | 2012

Characterization of an inducible promoter in different DNA copy number conditions

Susanna Zucca; Lorenzo Pasotti; Giuliano Mazzini; Maria Gabriella Cusella De Angelis; Paolo Magni

BackgroundThe bottom-up programming of living organisms to implement novel user-defined biological capabilities is one of the main goals of synthetic biology. Currently, a predominant problem connected with the construction of even simple synthetic biological systems is the unpredictability of the genetic circuitry when assembled and incorporated in living cells. Copy number, transcriptional/translational demand and toxicity of the DNA-encoded functions are some of the major factors which may lead to cell overburdening and thus to nonlinear effects on system output. It is important to disclose the linearity working boundaries of engineered biological systems when dealing with such phenomena.ResultsThe output of an N-3-oxohexanoyl-L-homoserine lactone (HSL)-inducible RFP-expressing device was studied in Escherichia coli in different copy number contexts, ranging from 1 copy per cell (integrated in the genome) to hundreds (via multicopy plasmids). The system is composed by a luxR constitutive expression cassette and a RFP gene regulated by the luxI promoter, which is activated by the HSL-LuxR complex. System output, in terms of promoter activity as a function of HSL concentration, was assessed relative to the one of a reference promoter in identical conditions by using the Relative Promoter Units (RPU) approach. Nonlinear effects were observed in the maximum activity, which is identical in single and low copy conditions, while it decreases for higher copy number conditions. In order to properly compare the luxI promoter strength among all the conditions, a mathematical modeling approach was used to relate the promoter activity to the estimated HSL-LuxR complex concentration, which is the actual activator of transcription. During model fitting, a correlation between the copy number and the dissociation constant of HSL-LuxR complex and luxI promoter was observed.ConclusionsEven in a simple inducible system, nonlinear effects are observed and non-trivial data processing is necessary to fully characterize its operation. The in-depth analysis of model systems like this can contribute to the advances in the synthetic biology field, since increasing the knowledge about linearity and working boundaries of biological phenomena could lead to a more rational design of artificial systems, also through mathematical models, which, for example, have been used here to study hard-to-predict interactions.

Collaboration


Dive into the Maria Gabriella Cusella De Angelis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurilio Sampaolesi

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge